| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cardeq0 |  |-  ( T e. Tarski -> ( ( card ` T ) = (/) <-> T = (/) ) ) | 
						
							| 2 | 1 | necon3bid |  |-  ( T e. Tarski -> ( ( card ` T ) =/= (/) <-> T =/= (/) ) ) | 
						
							| 3 | 2 | biimpar |  |-  ( ( T e. Tarski /\ T =/= (/) ) -> ( card ` T ) =/= (/) ) | 
						
							| 4 |  | eqid |  |-  ( z e. ( cf ` ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ) |-> ( har ` ( w ` z ) ) ) = ( z e. ( cf ` ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ) |-> ( har ` ( w ` z ) ) ) | 
						
							| 5 | 4 | pwcfsdom |  |-  ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ~< ( ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ^m ( cf ` ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ) ) | 
						
							| 6 |  | vpwex |  |-  ~P x e. _V | 
						
							| 7 | 6 | canth2 |  |-  ~P x ~< ~P ~P x | 
						
							| 8 |  | simpl |  |-  ( ( T e. Tarski /\ x e. ( card ` T ) ) -> T e. Tarski ) | 
						
							| 9 |  | cardon |  |-  ( card ` T ) e. On | 
						
							| 10 | 9 | oneli |  |-  ( x e. ( card ` T ) -> x e. On ) | 
						
							| 11 | 10 | adantl |  |-  ( ( T e. Tarski /\ x e. ( card ` T ) ) -> x e. On ) | 
						
							| 12 |  | cardsdomelir |  |-  ( x e. ( card ` T ) -> x ~< T ) | 
						
							| 13 | 12 | adantl |  |-  ( ( T e. Tarski /\ x e. ( card ` T ) ) -> x ~< T ) | 
						
							| 14 |  | tskord |  |-  ( ( T e. Tarski /\ x e. On /\ x ~< T ) -> x e. T ) | 
						
							| 15 | 8 11 13 14 | syl3anc |  |-  ( ( T e. Tarski /\ x e. ( card ` T ) ) -> x e. T ) | 
						
							| 16 |  | tskpw |  |-  ( ( T e. Tarski /\ x e. T ) -> ~P x e. T ) | 
						
							| 17 |  | tskpwss |  |-  ( ( T e. Tarski /\ ~P x e. T ) -> ~P ~P x C_ T ) | 
						
							| 18 | 16 17 | syldan |  |-  ( ( T e. Tarski /\ x e. T ) -> ~P ~P x C_ T ) | 
						
							| 19 | 15 18 | syldan |  |-  ( ( T e. Tarski /\ x e. ( card ` T ) ) -> ~P ~P x C_ T ) | 
						
							| 20 |  | ssdomg |  |-  ( T e. Tarski -> ( ~P ~P x C_ T -> ~P ~P x ~<_ T ) ) | 
						
							| 21 | 8 19 20 | sylc |  |-  ( ( T e. Tarski /\ x e. ( card ` T ) ) -> ~P ~P x ~<_ T ) | 
						
							| 22 |  | cardidg |  |-  ( T e. Tarski -> ( card ` T ) ~~ T ) | 
						
							| 23 | 22 | ensymd |  |-  ( T e. Tarski -> T ~~ ( card ` T ) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( T e. Tarski /\ x e. ( card ` T ) ) -> T ~~ ( card ` T ) ) | 
						
							| 25 |  | domentr |  |-  ( ( ~P ~P x ~<_ T /\ T ~~ ( card ` T ) ) -> ~P ~P x ~<_ ( card ` T ) ) | 
						
							| 26 | 21 24 25 | syl2anc |  |-  ( ( T e. Tarski /\ x e. ( card ` T ) ) -> ~P ~P x ~<_ ( card ` T ) ) | 
						
							| 27 |  | sdomdomtr |  |-  ( ( ~P x ~< ~P ~P x /\ ~P ~P x ~<_ ( card ` T ) ) -> ~P x ~< ( card ` T ) ) | 
						
							| 28 | 7 26 27 | sylancr |  |-  ( ( T e. Tarski /\ x e. ( card ` T ) ) -> ~P x ~< ( card ` T ) ) | 
						
							| 29 | 28 | ralrimiva |  |-  ( T e. Tarski -> A. x e. ( card ` T ) ~P x ~< ( card ` T ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( T e. Tarski /\ T =/= (/) ) -> A. x e. ( card ` T ) ~P x ~< ( card ` T ) ) | 
						
							| 31 |  | inawinalem |  |-  ( ( card ` T ) e. On -> ( A. x e. ( card ` T ) ~P x ~< ( card ` T ) -> A. x e. ( card ` T ) E. y e. ( card ` T ) x ~< y ) ) | 
						
							| 32 | 9 31 | ax-mp |  |-  ( A. x e. ( card ` T ) ~P x ~< ( card ` T ) -> A. x e. ( card ` T ) E. y e. ( card ` T ) x ~< y ) | 
						
							| 33 |  | winainflem |  |-  ( ( ( card ` T ) =/= (/) /\ ( card ` T ) e. On /\ A. x e. ( card ` T ) E. y e. ( card ` T ) x ~< y ) -> _om C_ ( card ` T ) ) | 
						
							| 34 | 9 33 | mp3an2 |  |-  ( ( ( card ` T ) =/= (/) /\ A. x e. ( card ` T ) E. y e. ( card ` T ) x ~< y ) -> _om C_ ( card ` T ) ) | 
						
							| 35 | 32 34 | sylan2 |  |-  ( ( ( card ` T ) =/= (/) /\ A. x e. ( card ` T ) ~P x ~< ( card ` T ) ) -> _om C_ ( card ` T ) ) | 
						
							| 36 | 3 30 35 | syl2anc |  |-  ( ( T e. Tarski /\ T =/= (/) ) -> _om C_ ( card ` T ) ) | 
						
							| 37 |  | cardidm |  |-  ( card ` ( card ` T ) ) = ( card ` T ) | 
						
							| 38 |  | cardaleph |  |-  ( ( _om C_ ( card ` T ) /\ ( card ` ( card ` T ) ) = ( card ` T ) ) -> ( card ` T ) = ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ) | 
						
							| 39 | 36 37 38 | sylancl |  |-  ( ( T e. Tarski /\ T =/= (/) ) -> ( card ` T ) = ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ) | 
						
							| 40 | 39 | fveq2d |  |-  ( ( T e. Tarski /\ T =/= (/) ) -> ( cf ` ( card ` T ) ) = ( cf ` ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ) ) | 
						
							| 41 | 39 40 | oveq12d |  |-  ( ( T e. Tarski /\ T =/= (/) ) -> ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) = ( ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ^m ( cf ` ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ) ) ) | 
						
							| 42 | 39 41 | breq12d |  |-  ( ( T e. Tarski /\ T =/= (/) ) -> ( ( card ` T ) ~< ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) <-> ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ~< ( ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ^m ( cf ` ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ) ) ) ) | 
						
							| 43 | 5 42 | mpbiri |  |-  ( ( T e. Tarski /\ T =/= (/) ) -> ( card ` T ) ~< ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) | 
						
							| 44 |  | simp1 |  |-  ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) /\ x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) -> T e. Tarski ) | 
						
							| 45 |  | simp3 |  |-  ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) /\ x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) -> x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) | 
						
							| 46 |  | fvex |  |-  ( card ` T ) e. _V | 
						
							| 47 |  | fvex |  |-  ( cf ` ( card ` T ) ) e. _V | 
						
							| 48 | 46 47 | elmap |  |-  ( x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) <-> x : ( cf ` ( card ` T ) ) --> ( card ` T ) ) | 
						
							| 49 |  | fssxp |  |-  ( x : ( cf ` ( card ` T ) ) --> ( card ` T ) -> x C_ ( ( cf ` ( card ` T ) ) X. ( card ` T ) ) ) | 
						
							| 50 | 48 49 | sylbi |  |-  ( x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) -> x C_ ( ( cf ` ( card ` T ) ) X. ( card ` T ) ) ) | 
						
							| 51 | 15 | ex |  |-  ( T e. Tarski -> ( x e. ( card ` T ) -> x e. T ) ) | 
						
							| 52 | 51 | ssrdv |  |-  ( T e. Tarski -> ( card ` T ) C_ T ) | 
						
							| 53 |  | cfle |  |-  ( cf ` ( card ` T ) ) C_ ( card ` T ) | 
						
							| 54 |  | sstr |  |-  ( ( ( cf ` ( card ` T ) ) C_ ( card ` T ) /\ ( card ` T ) C_ T ) -> ( cf ` ( card ` T ) ) C_ T ) | 
						
							| 55 | 53 54 | mpan |  |-  ( ( card ` T ) C_ T -> ( cf ` ( card ` T ) ) C_ T ) | 
						
							| 56 |  | tskxpss |  |-  ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) C_ T /\ ( card ` T ) C_ T ) -> ( ( cf ` ( card ` T ) ) X. ( card ` T ) ) C_ T ) | 
						
							| 57 | 56 | 3exp |  |-  ( T e. Tarski -> ( ( cf ` ( card ` T ) ) C_ T -> ( ( card ` T ) C_ T -> ( ( cf ` ( card ` T ) ) X. ( card ` T ) ) C_ T ) ) ) | 
						
							| 58 | 57 | com23 |  |-  ( T e. Tarski -> ( ( card ` T ) C_ T -> ( ( cf ` ( card ` T ) ) C_ T -> ( ( cf ` ( card ` T ) ) X. ( card ` T ) ) C_ T ) ) ) | 
						
							| 59 | 55 58 | mpdi |  |-  ( T e. Tarski -> ( ( card ` T ) C_ T -> ( ( cf ` ( card ` T ) ) X. ( card ` T ) ) C_ T ) ) | 
						
							| 60 | 52 59 | mpd |  |-  ( T e. Tarski -> ( ( cf ` ( card ` T ) ) X. ( card ` T ) ) C_ T ) | 
						
							| 61 |  | sstr2 |  |-  ( x C_ ( ( cf ` ( card ` T ) ) X. ( card ` T ) ) -> ( ( ( cf ` ( card ` T ) ) X. ( card ` T ) ) C_ T -> x C_ T ) ) | 
						
							| 62 | 50 60 61 | syl2im |  |-  ( x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) -> ( T e. Tarski -> x C_ T ) ) | 
						
							| 63 | 45 44 62 | sylc |  |-  ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) /\ x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) -> x C_ T ) | 
						
							| 64 |  | simp2 |  |-  ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) /\ x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) -> ( cf ` ( card ` T ) ) e. ( card ` T ) ) | 
						
							| 65 |  | ffn |  |-  ( x : ( cf ` ( card ` T ) ) --> ( card ` T ) -> x Fn ( cf ` ( card ` T ) ) ) | 
						
							| 66 |  | fndmeng |  |-  ( ( x Fn ( cf ` ( card ` T ) ) /\ ( cf ` ( card ` T ) ) e. _V ) -> ( cf ` ( card ` T ) ) ~~ x ) | 
						
							| 67 | 65 47 66 | sylancl |  |-  ( x : ( cf ` ( card ` T ) ) --> ( card ` T ) -> ( cf ` ( card ` T ) ) ~~ x ) | 
						
							| 68 | 48 67 | sylbi |  |-  ( x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) -> ( cf ` ( card ` T ) ) ~~ x ) | 
						
							| 69 | 68 | ensymd |  |-  ( x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) -> x ~~ ( cf ` ( card ` T ) ) ) | 
						
							| 70 |  | cardsdomelir |  |-  ( ( cf ` ( card ` T ) ) e. ( card ` T ) -> ( cf ` ( card ` T ) ) ~< T ) | 
						
							| 71 |  | ensdomtr |  |-  ( ( x ~~ ( cf ` ( card ` T ) ) /\ ( cf ` ( card ` T ) ) ~< T ) -> x ~< T ) | 
						
							| 72 | 69 70 71 | syl2an |  |-  ( ( x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) /\ ( cf ` ( card ` T ) ) e. ( card ` T ) ) -> x ~< T ) | 
						
							| 73 | 45 64 72 | syl2anc |  |-  ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) /\ x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) -> x ~< T ) | 
						
							| 74 |  | tskssel |  |-  ( ( T e. Tarski /\ x C_ T /\ x ~< T ) -> x e. T ) | 
						
							| 75 | 44 63 73 74 | syl3anc |  |-  ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) /\ x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) -> x e. T ) | 
						
							| 76 | 75 | 3expia |  |-  ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) ) -> ( x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) -> x e. T ) ) | 
						
							| 77 | 76 | ssrdv |  |-  ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) ) -> ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) C_ T ) | 
						
							| 78 |  | ssdomg |  |-  ( T e. Tarski -> ( ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) C_ T -> ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ~<_ T ) ) | 
						
							| 79 | 78 | imp |  |-  ( ( T e. Tarski /\ ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) C_ T ) -> ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ~<_ T ) | 
						
							| 80 | 77 79 | syldan |  |-  ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) ) -> ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ~<_ T ) | 
						
							| 81 | 23 | adantr |  |-  ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) ) -> T ~~ ( card ` T ) ) | 
						
							| 82 |  | domentr |  |-  ( ( ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ~<_ T /\ T ~~ ( card ` T ) ) -> ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ~<_ ( card ` T ) ) | 
						
							| 83 | 80 81 82 | syl2anc |  |-  ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) ) -> ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ~<_ ( card ` T ) ) | 
						
							| 84 |  | domnsym |  |-  ( ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ~<_ ( card ` T ) -> -. ( card ` T ) ~< ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) | 
						
							| 85 | 83 84 | syl |  |-  ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) ) -> -. ( card ` T ) ~< ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) | 
						
							| 86 | 85 | ex |  |-  ( T e. Tarski -> ( ( cf ` ( card ` T ) ) e. ( card ` T ) -> -. ( card ` T ) ~< ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) ) | 
						
							| 87 | 86 | adantr |  |-  ( ( T e. Tarski /\ T =/= (/) ) -> ( ( cf ` ( card ` T ) ) e. ( card ` T ) -> -. ( card ` T ) ~< ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) ) | 
						
							| 88 | 43 87 | mt2d |  |-  ( ( T e. Tarski /\ T =/= (/) ) -> -. ( cf ` ( card ` T ) ) e. ( card ` T ) ) | 
						
							| 89 |  | cfon |  |-  ( cf ` ( card ` T ) ) e. On | 
						
							| 90 | 89 9 | onsseli |  |-  ( ( cf ` ( card ` T ) ) C_ ( card ` T ) <-> ( ( cf ` ( card ` T ) ) e. ( card ` T ) \/ ( cf ` ( card ` T ) ) = ( card ` T ) ) ) | 
						
							| 91 | 53 90 | mpbi |  |-  ( ( cf ` ( card ` T ) ) e. ( card ` T ) \/ ( cf ` ( card ` T ) ) = ( card ` T ) ) | 
						
							| 92 | 91 | ori |  |-  ( -. ( cf ` ( card ` T ) ) e. ( card ` T ) -> ( cf ` ( card ` T ) ) = ( card ` T ) ) | 
						
							| 93 | 88 92 | syl |  |-  ( ( T e. Tarski /\ T =/= (/) ) -> ( cf ` ( card ` T ) ) = ( card ` T ) ) | 
						
							| 94 |  | elina |  |-  ( ( card ` T ) e. Inacc <-> ( ( card ` T ) =/= (/) /\ ( cf ` ( card ` T ) ) = ( card ` T ) /\ A. x e. ( card ` T ) ~P x ~< ( card ` T ) ) ) | 
						
							| 95 | 3 93 30 94 | syl3anbrc |  |-  ( ( T e. Tarski /\ T =/= (/) ) -> ( card ` T ) e. Inacc ) |