Step |
Hyp |
Ref |
Expression |
1 |
|
eltskg |
|- ( T e. Tarski -> ( T e. Tarski <-> ( A. x e. T ( ~P x C_ T /\ E. y e. T ~P x C_ y ) /\ A. x e. ~P T ( x ~~ T \/ x e. T ) ) ) ) |
2 |
1
|
ibi |
|- ( T e. Tarski -> ( A. x e. T ( ~P x C_ T /\ E. y e. T ~P x C_ y ) /\ A. x e. ~P T ( x ~~ T \/ x e. T ) ) ) |
3 |
2
|
simprd |
|- ( T e. Tarski -> A. x e. ~P T ( x ~~ T \/ x e. T ) ) |
4 |
|
elpw2g |
|- ( T e. Tarski -> ( A e. ~P T <-> A C_ T ) ) |
5 |
4
|
biimpar |
|- ( ( T e. Tarski /\ A C_ T ) -> A e. ~P T ) |
6 |
|
breq1 |
|- ( x = A -> ( x ~~ T <-> A ~~ T ) ) |
7 |
|
eleq1 |
|- ( x = A -> ( x e. T <-> A e. T ) ) |
8 |
6 7
|
orbi12d |
|- ( x = A -> ( ( x ~~ T \/ x e. T ) <-> ( A ~~ T \/ A e. T ) ) ) |
9 |
8
|
rspccva |
|- ( ( A. x e. ~P T ( x ~~ T \/ x e. T ) /\ A e. ~P T ) -> ( A ~~ T \/ A e. T ) ) |
10 |
3 5 9
|
syl2an2r |
|- ( ( T e. Tarski /\ A C_ T ) -> ( A ~~ T \/ A e. T ) ) |