| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eltskg |  |-  ( T e. Tarski -> ( T e. Tarski <-> ( A. x e. T ( ~P x C_ T /\ E. y e. T ~P x C_ y ) /\ A. x e. ~P T ( x ~~ T \/ x e. T ) ) ) ) | 
						
							| 2 | 1 | ibi |  |-  ( T e. Tarski -> ( A. x e. T ( ~P x C_ T /\ E. y e. T ~P x C_ y ) /\ A. x e. ~P T ( x ~~ T \/ x e. T ) ) ) | 
						
							| 3 | 2 | simprd |  |-  ( T e. Tarski -> A. x e. ~P T ( x ~~ T \/ x e. T ) ) | 
						
							| 4 |  | elpw2g |  |-  ( T e. Tarski -> ( A e. ~P T <-> A C_ T ) ) | 
						
							| 5 | 4 | biimpar |  |-  ( ( T e. Tarski /\ A C_ T ) -> A e. ~P T ) | 
						
							| 6 |  | breq1 |  |-  ( x = A -> ( x ~~ T <-> A ~~ T ) ) | 
						
							| 7 |  | eleq1 |  |-  ( x = A -> ( x e. T <-> A e. T ) ) | 
						
							| 8 | 6 7 | orbi12d |  |-  ( x = A -> ( ( x ~~ T \/ x e. T ) <-> ( A ~~ T \/ A e. T ) ) ) | 
						
							| 9 | 8 | rspccva |  |-  ( ( A. x e. ~P T ( x ~~ T \/ x e. T ) /\ A e. ~P T ) -> ( A ~~ T \/ A e. T ) ) | 
						
							| 10 | 3 5 9 | syl2an2r |  |-  ( ( T e. Tarski /\ A C_ T ) -> ( A ~~ T \/ A e. T ) ) |