Metamath Proof Explorer


Theorem tskin

Description: The intersection of two elements of a Tarski class belongs to the class. (Contributed by FL, 30-Dec-2010) (Proof shortened by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tskin
|- ( ( T e. Tarski /\ A e. T ) -> ( A i^i B ) e. T )

Proof

Step Hyp Ref Expression
1 inss1
 |-  ( A i^i B ) C_ A
2 tskss
 |-  ( ( T e. Tarski /\ A e. T /\ ( A i^i B ) C_ A ) -> ( A i^i B ) e. T )
3 1 2 mp3an3
 |-  ( ( T e. Tarski /\ A e. T ) -> ( A i^i B ) e. T )