| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r111 |
|- R1 : On -1-1-> _V |
| 2 |
|
omsson |
|- _om C_ On |
| 3 |
|
omex |
|- _om e. _V |
| 4 |
3
|
f1imaen |
|- ( ( R1 : On -1-1-> _V /\ _om C_ On ) -> ( R1 " _om ) ~~ _om ) |
| 5 |
1 2 4
|
mp2an |
|- ( R1 " _om ) ~~ _om |
| 6 |
5
|
ensymi |
|- _om ~~ ( R1 " _om ) |
| 7 |
|
simpl |
|- ( ( T e. Tarski /\ T =/= (/) ) -> T e. Tarski ) |
| 8 |
|
tskr1om |
|- ( ( T e. Tarski /\ T =/= (/) ) -> ( R1 " _om ) C_ T ) |
| 9 |
|
ssdomg |
|- ( T e. Tarski -> ( ( R1 " _om ) C_ T -> ( R1 " _om ) ~<_ T ) ) |
| 10 |
7 8 9
|
sylc |
|- ( ( T e. Tarski /\ T =/= (/) ) -> ( R1 " _om ) ~<_ T ) |
| 11 |
|
endomtr |
|- ( ( _om ~~ ( R1 " _om ) /\ ( R1 " _om ) ~<_ T ) -> _om ~<_ T ) |
| 12 |
6 10 11
|
sylancr |
|- ( ( T e. Tarski /\ T =/= (/) ) -> _om ~<_ T ) |