Metamath Proof Explorer


Theorem tskss

Description: The subsets of an element of a Tarski class belong to the class. (Contributed by FL, 30-Dec-2010) (Revised by Mario Carneiro, 18-Jun-2013)

Ref Expression
Assertion tskss
|- ( ( T e. Tarski /\ A e. T /\ B C_ A ) -> B e. T )

Proof

Step Hyp Ref Expression
1 elpw2g
 |-  ( A e. T -> ( B e. ~P A <-> B C_ A ) )
2 1 adantl
 |-  ( ( T e. Tarski /\ A e. T ) -> ( B e. ~P A <-> B C_ A ) )
3 tskpwss
 |-  ( ( T e. Tarski /\ A e. T ) -> ~P A C_ T )
4 3 sseld
 |-  ( ( T e. Tarski /\ A e. T ) -> ( B e. ~P A -> B e. T ) )
5 2 4 sylbird
 |-  ( ( T e. Tarski /\ A e. T ) -> ( B C_ A -> B e. T ) )
6 5 3impia
 |-  ( ( T e. Tarski /\ A e. T /\ B C_ A ) -> B e. T )