Description: The subsets of an element of a Tarski class belong to the class. (Contributed by FL, 30-Dec-2010) (Revised by Mario Carneiro, 18-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | tskss | |- ( ( T e. Tarski /\ A e. T /\ B C_ A ) -> B e. T ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2g | |- ( A e. T -> ( B e. ~P A <-> B C_ A ) ) |
|
2 | 1 | adantl | |- ( ( T e. Tarski /\ A e. T ) -> ( B e. ~P A <-> B C_ A ) ) |
3 | tskpwss | |- ( ( T e. Tarski /\ A e. T ) -> ~P A C_ T ) |
|
4 | 3 | sseld | |- ( ( T e. Tarski /\ A e. T ) -> ( B e. ~P A -> B e. T ) ) |
5 | 2 4 | sylbird | |- ( ( T e. Tarski /\ A e. T ) -> ( B C_ A -> B e. T ) ) |
6 | 5 | 3impia | |- ( ( T e. Tarski /\ A e. T /\ B C_ A ) -> B e. T ) |