Description: The subsets of an element of a Tarski class belong to the class. (Contributed by FL, 30-Dec-2010) (Revised by Mario Carneiro, 18-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskss | |- ( ( T e. Tarski /\ A e. T /\ B C_ A ) -> B e. T ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elpw2g | |- ( A e. T -> ( B e. ~P A <-> B C_ A ) ) | |
| 2 | 1 | adantl | |- ( ( T e. Tarski /\ A e. T ) -> ( B e. ~P A <-> B C_ A ) ) | 
| 3 | tskpwss | |- ( ( T e. Tarski /\ A e. T ) -> ~P A C_ T ) | |
| 4 | 3 | sseld | |- ( ( T e. Tarski /\ A e. T ) -> ( B e. ~P A -> B e. T ) ) | 
| 5 | 2 4 | sylbird | |- ( ( T e. Tarski /\ A e. T ) -> ( B C_ A -> B e. T ) ) | 
| 6 | 5 | 3impia | |- ( ( T e. Tarski /\ A e. T /\ B C_ A ) -> B e. T ) |