Metamath Proof Explorer


Theorem tsksuc

Description: If an element of a Tarski class is an ordinal number, its successor is an element of the class. JFM CLASSES2 th. 6 (partly). (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tsksuc
|- ( ( T e. Tarski /\ A e. On /\ A e. T ) -> suc A e. T )

Proof

Step Hyp Ref Expression
1 simp1
 |-  ( ( T e. Tarski /\ A e. On /\ A e. T ) -> T e. Tarski )
2 tskpw
 |-  ( ( T e. Tarski /\ A e. T ) -> ~P A e. T )
3 2 3adant2
 |-  ( ( T e. Tarski /\ A e. On /\ A e. T ) -> ~P A e. T )
4 eloni
 |-  ( A e. On -> Ord A )
5 4 3ad2ant2
 |-  ( ( T e. Tarski /\ A e. On /\ A e. T ) -> Ord A )
6 ordunisuc
 |-  ( Ord A -> U. suc A = A )
7 eqimss
 |-  ( U. suc A = A -> U. suc A C_ A )
8 5 6 7 3syl
 |-  ( ( T e. Tarski /\ A e. On /\ A e. T ) -> U. suc A C_ A )
9 sspwuni
 |-  ( suc A C_ ~P A <-> U. suc A C_ A )
10 8 9 sylibr
 |-  ( ( T e. Tarski /\ A e. On /\ A e. T ) -> suc A C_ ~P A )
11 tskss
 |-  ( ( T e. Tarski /\ ~P A e. T /\ suc A C_ ~P A ) -> suc A e. T )
12 1 3 10 11 syl3anc
 |-  ( ( T e. Tarski /\ A e. On /\ A e. T ) -> suc A e. T )