| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tsksdom |  |-  ( ( T e. Tarski /\ A e. T ) -> A ~< T ) | 
						
							| 2 |  | cardidg |  |-  ( T e. Tarski -> ( card ` T ) ~~ T ) | 
						
							| 3 | 2 | ensymd |  |-  ( T e. Tarski -> T ~~ ( card ` T ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( T e. Tarski /\ A e. T ) -> T ~~ ( card ` T ) ) | 
						
							| 5 |  | sdomentr |  |-  ( ( A ~< T /\ T ~~ ( card ` T ) ) -> A ~< ( card ` T ) ) | 
						
							| 6 | 1 4 5 | syl2anc |  |-  ( ( T e. Tarski /\ A e. T ) -> A ~< ( card ` T ) ) | 
						
							| 7 |  | eqid |  |-  ( x e. A |-> ( f " x ) ) = ( x e. A |-> ( f " x ) ) | 
						
							| 8 | 7 | rnmpt |  |-  ran ( x e. A |-> ( f " x ) ) = { z | E. x e. A z = ( f " x ) } | 
						
							| 9 |  | cardon |  |-  ( card ` T ) e. On | 
						
							| 10 |  | sdomdom |  |-  ( A ~< ( card ` T ) -> A ~<_ ( card ` T ) ) | 
						
							| 11 |  | ondomen |  |-  ( ( ( card ` T ) e. On /\ A ~<_ ( card ` T ) ) -> A e. dom card ) | 
						
							| 12 | 9 10 11 | sylancr |  |-  ( A ~< ( card ` T ) -> A e. dom card ) | 
						
							| 13 | 12 | adantl |  |-  ( ( A e. T /\ A ~< ( card ` T ) ) -> A e. dom card ) | 
						
							| 14 |  | vex |  |-  f e. _V | 
						
							| 15 | 14 | imaex |  |-  ( f " x ) e. _V | 
						
							| 16 | 15 7 | fnmpti |  |-  ( x e. A |-> ( f " x ) ) Fn A | 
						
							| 17 |  | dffn4 |  |-  ( ( x e. A |-> ( f " x ) ) Fn A <-> ( x e. A |-> ( f " x ) ) : A -onto-> ran ( x e. A |-> ( f " x ) ) ) | 
						
							| 18 | 16 17 | mpbi |  |-  ( x e. A |-> ( f " x ) ) : A -onto-> ran ( x e. A |-> ( f " x ) ) | 
						
							| 19 |  | fodomnum |  |-  ( A e. dom card -> ( ( x e. A |-> ( f " x ) ) : A -onto-> ran ( x e. A |-> ( f " x ) ) -> ran ( x e. A |-> ( f " x ) ) ~<_ A ) ) | 
						
							| 20 | 13 18 19 | mpisyl |  |-  ( ( A e. T /\ A ~< ( card ` T ) ) -> ran ( x e. A |-> ( f " x ) ) ~<_ A ) | 
						
							| 21 | 8 20 | eqbrtrrid |  |-  ( ( A e. T /\ A ~< ( card ` T ) ) -> { z | E. x e. A z = ( f " x ) } ~<_ A ) | 
						
							| 22 |  | domsdomtr |  |-  ( ( { z | E. x e. A z = ( f " x ) } ~<_ A /\ A ~< ( card ` T ) ) -> { z | E. x e. A z = ( f " x ) } ~< ( card ` T ) ) | 
						
							| 23 | 21 22 | sylancom |  |-  ( ( A e. T /\ A ~< ( card ` T ) ) -> { z | E. x e. A z = ( f " x ) } ~< ( card ` T ) ) | 
						
							| 24 | 23 | adantll |  |-  ( ( ( T e. Tarski /\ A e. T ) /\ A ~< ( card ` T ) ) -> { z | E. x e. A z = ( f " x ) } ~< ( card ` T ) ) | 
						
							| 25 | 6 24 | mpdan |  |-  ( ( T e. Tarski /\ A e. T ) -> { z | E. x e. A z = ( f " x ) } ~< ( card ` T ) ) | 
						
							| 26 |  | ne0i |  |-  ( A e. T -> T =/= (/) ) | 
						
							| 27 |  | tskcard |  |-  ( ( T e. Tarski /\ T =/= (/) ) -> ( card ` T ) e. Inacc ) | 
						
							| 28 | 26 27 | sylan2 |  |-  ( ( T e. Tarski /\ A e. T ) -> ( card ` T ) e. Inacc ) | 
						
							| 29 |  | elina |  |-  ( ( card ` T ) e. Inacc <-> ( ( card ` T ) =/= (/) /\ ( cf ` ( card ` T ) ) = ( card ` T ) /\ A. x e. ( card ` T ) ~P x ~< ( card ` T ) ) ) | 
						
							| 30 | 29 | simp2bi |  |-  ( ( card ` T ) e. Inacc -> ( cf ` ( card ` T ) ) = ( card ` T ) ) | 
						
							| 31 | 28 30 | syl |  |-  ( ( T e. Tarski /\ A e. T ) -> ( cf ` ( card ` T ) ) = ( card ` T ) ) | 
						
							| 32 | 25 31 | breqtrrd |  |-  ( ( T e. Tarski /\ A e. T ) -> { z | E. x e. A z = ( f " x ) } ~< ( cf ` ( card ` T ) ) ) | 
						
							| 33 | 32 | 3adant2 |  |-  ( ( T e. Tarski /\ Tr T /\ A e. T ) -> { z | E. x e. A z = ( f " x ) } ~< ( cf ` ( card ` T ) ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> { z | E. x e. A z = ( f " x ) } ~< ( cf ` ( card ` T ) ) ) | 
						
							| 35 | 28 | 3adant2 |  |-  ( ( T e. Tarski /\ Tr T /\ A e. T ) -> ( card ` T ) e. Inacc ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> ( card ` T ) e. Inacc ) | 
						
							| 37 |  | inawina |  |-  ( ( card ` T ) e. Inacc -> ( card ` T ) e. InaccW ) | 
						
							| 38 |  | winalim |  |-  ( ( card ` T ) e. InaccW -> Lim ( card ` T ) ) | 
						
							| 39 | 36 37 38 | 3syl |  |-  ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> Lim ( card ` T ) ) | 
						
							| 40 |  | vex |  |-  y e. _V | 
						
							| 41 |  | eqeq1 |  |-  ( z = y -> ( z = ( f " x ) <-> y = ( f " x ) ) ) | 
						
							| 42 | 41 | rexbidv |  |-  ( z = y -> ( E. x e. A z = ( f " x ) <-> E. x e. A y = ( f " x ) ) ) | 
						
							| 43 | 40 42 | elab |  |-  ( y e. { z | E. x e. A z = ( f " x ) } <-> E. x e. A y = ( f " x ) ) | 
						
							| 44 |  | imassrn |  |-  ( f " x ) C_ ran f | 
						
							| 45 |  | f1ofo |  |-  ( f : U. A -1-1-onto-> ( card ` T ) -> f : U. A -onto-> ( card ` T ) ) | 
						
							| 46 |  | forn |  |-  ( f : U. A -onto-> ( card ` T ) -> ran f = ( card ` T ) ) | 
						
							| 47 | 45 46 | syl |  |-  ( f : U. A -1-1-onto-> ( card ` T ) -> ran f = ( card ` T ) ) | 
						
							| 48 | 44 47 | sseqtrid |  |-  ( f : U. A -1-1-onto-> ( card ` T ) -> ( f " x ) C_ ( card ` T ) ) | 
						
							| 49 | 48 | ad2antlr |  |-  ( ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) /\ x e. A ) -> ( f " x ) C_ ( card ` T ) ) | 
						
							| 50 |  | f1of1 |  |-  ( f : U. A -1-1-onto-> ( card ` T ) -> f : U. A -1-1-> ( card ` T ) ) | 
						
							| 51 |  | elssuni |  |-  ( x e. A -> x C_ U. A ) | 
						
							| 52 |  | vex |  |-  x e. _V | 
						
							| 53 | 52 | f1imaen |  |-  ( ( f : U. A -1-1-> ( card ` T ) /\ x C_ U. A ) -> ( f " x ) ~~ x ) | 
						
							| 54 | 50 51 53 | syl2an |  |-  ( ( f : U. A -1-1-onto-> ( card ` T ) /\ x e. A ) -> ( f " x ) ~~ x ) | 
						
							| 55 | 54 | adantll |  |-  ( ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) /\ x e. A ) -> ( f " x ) ~~ x ) | 
						
							| 56 |  | simpl1 |  |-  ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ x e. A ) -> T e. Tarski ) | 
						
							| 57 |  | trss |  |-  ( Tr T -> ( A e. T -> A C_ T ) ) | 
						
							| 58 | 57 | imp |  |-  ( ( Tr T /\ A e. T ) -> A C_ T ) | 
						
							| 59 | 58 | 3adant1 |  |-  ( ( T e. Tarski /\ Tr T /\ A e. T ) -> A C_ T ) | 
						
							| 60 | 59 | sselda |  |-  ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ x e. A ) -> x e. T ) | 
						
							| 61 |  | tsksdom |  |-  ( ( T e. Tarski /\ x e. T ) -> x ~< T ) | 
						
							| 62 | 56 60 61 | syl2anc |  |-  ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ x e. A ) -> x ~< T ) | 
						
							| 63 | 56 3 | syl |  |-  ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ x e. A ) -> T ~~ ( card ` T ) ) | 
						
							| 64 |  | sdomentr |  |-  ( ( x ~< T /\ T ~~ ( card ` T ) ) -> x ~< ( card ` T ) ) | 
						
							| 65 | 62 63 64 | syl2anc |  |-  ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ x e. A ) -> x ~< ( card ` T ) ) | 
						
							| 66 | 65 | adantlr |  |-  ( ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) /\ x e. A ) -> x ~< ( card ` T ) ) | 
						
							| 67 |  | ensdomtr |  |-  ( ( ( f " x ) ~~ x /\ x ~< ( card ` T ) ) -> ( f " x ) ~< ( card ` T ) ) | 
						
							| 68 | 55 66 67 | syl2anc |  |-  ( ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) /\ x e. A ) -> ( f " x ) ~< ( card ` T ) ) | 
						
							| 69 | 36 30 | syl |  |-  ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> ( cf ` ( card ` T ) ) = ( card ` T ) ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) /\ x e. A ) -> ( cf ` ( card ` T ) ) = ( card ` T ) ) | 
						
							| 71 | 68 70 | breqtrrd |  |-  ( ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) /\ x e. A ) -> ( f " x ) ~< ( cf ` ( card ` T ) ) ) | 
						
							| 72 |  | sseq1 |  |-  ( y = ( f " x ) -> ( y C_ ( card ` T ) <-> ( f " x ) C_ ( card ` T ) ) ) | 
						
							| 73 |  | breq1 |  |-  ( y = ( f " x ) -> ( y ~< ( cf ` ( card ` T ) ) <-> ( f " x ) ~< ( cf ` ( card ` T ) ) ) ) | 
						
							| 74 | 72 73 | anbi12d |  |-  ( y = ( f " x ) -> ( ( y C_ ( card ` T ) /\ y ~< ( cf ` ( card ` T ) ) ) <-> ( ( f " x ) C_ ( card ` T ) /\ ( f " x ) ~< ( cf ` ( card ` T ) ) ) ) ) | 
						
							| 75 | 74 | biimprcd |  |-  ( ( ( f " x ) C_ ( card ` T ) /\ ( f " x ) ~< ( cf ` ( card ` T ) ) ) -> ( y = ( f " x ) -> ( y C_ ( card ` T ) /\ y ~< ( cf ` ( card ` T ) ) ) ) ) | 
						
							| 76 | 49 71 75 | syl2anc |  |-  ( ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) /\ x e. A ) -> ( y = ( f " x ) -> ( y C_ ( card ` T ) /\ y ~< ( cf ` ( card ` T ) ) ) ) ) | 
						
							| 77 | 76 | rexlimdva |  |-  ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> ( E. x e. A y = ( f " x ) -> ( y C_ ( card ` T ) /\ y ~< ( cf ` ( card ` T ) ) ) ) ) | 
						
							| 78 | 43 77 | biimtrid |  |-  ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> ( y e. { z | E. x e. A z = ( f " x ) } -> ( y C_ ( card ` T ) /\ y ~< ( cf ` ( card ` T ) ) ) ) ) | 
						
							| 79 | 78 | ralrimiv |  |-  ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> A. y e. { z | E. x e. A z = ( f " x ) } ( y C_ ( card ` T ) /\ y ~< ( cf ` ( card ` T ) ) ) ) | 
						
							| 80 |  | fvex |  |-  ( card ` T ) e. _V | 
						
							| 81 | 80 | cfslb2n |  |-  ( ( Lim ( card ` T ) /\ A. y e. { z | E. x e. A z = ( f " x ) } ( y C_ ( card ` T ) /\ y ~< ( cf ` ( card ` T ) ) ) ) -> ( { z | E. x e. A z = ( f " x ) } ~< ( cf ` ( card ` T ) ) -> U. { z | E. x e. A z = ( f " x ) } =/= ( card ` T ) ) ) | 
						
							| 82 | 39 79 81 | syl2anc |  |-  ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> ( { z | E. x e. A z = ( f " x ) } ~< ( cf ` ( card ` T ) ) -> U. { z | E. x e. A z = ( f " x ) } =/= ( card ` T ) ) ) | 
						
							| 83 | 34 82 | mpd |  |-  ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> U. { z | E. x e. A z = ( f " x ) } =/= ( card ` T ) ) | 
						
							| 84 | 15 | dfiun2 |  |-  U_ x e. A ( f " x ) = U. { z | E. x e. A z = ( f " x ) } | 
						
							| 85 | 48 | ralrimivw |  |-  ( f : U. A -1-1-onto-> ( card ` T ) -> A. x e. A ( f " x ) C_ ( card ` T ) ) | 
						
							| 86 |  | iunss |  |-  ( U_ x e. A ( f " x ) C_ ( card ` T ) <-> A. x e. A ( f " x ) C_ ( card ` T ) ) | 
						
							| 87 | 85 86 | sylibr |  |-  ( f : U. A -1-1-onto-> ( card ` T ) -> U_ x e. A ( f " x ) C_ ( card ` T ) ) | 
						
							| 88 |  | fof |  |-  ( f : U. A -onto-> ( card ` T ) -> f : U. A --> ( card ` T ) ) | 
						
							| 89 |  | foelrn |  |-  ( ( f : U. A -onto-> ( card ` T ) /\ y e. ( card ` T ) ) -> E. z e. U. A y = ( f ` z ) ) | 
						
							| 90 | 89 | ex |  |-  ( f : U. A -onto-> ( card ` T ) -> ( y e. ( card ` T ) -> E. z e. U. A y = ( f ` z ) ) ) | 
						
							| 91 |  | eluni2 |  |-  ( z e. U. A <-> E. x e. A z e. x ) | 
						
							| 92 |  | nfv |  |-  F/ x f : U. A --> ( card ` T ) | 
						
							| 93 |  | nfiu1 |  |-  F/_ x U_ x e. A ( f " x ) | 
						
							| 94 | 93 | nfel2 |  |-  F/ x ( f ` z ) e. U_ x e. A ( f " x ) | 
						
							| 95 |  | ssiun2 |  |-  ( x e. A -> ( f " x ) C_ U_ x e. A ( f " x ) ) | 
						
							| 96 | 95 | 3ad2ant2 |  |-  ( ( f : U. A --> ( card ` T ) /\ x e. A /\ z e. x ) -> ( f " x ) C_ U_ x e. A ( f " x ) ) | 
						
							| 97 |  | ffn |  |-  ( f : U. A --> ( card ` T ) -> f Fn U. A ) | 
						
							| 98 | 97 | 3ad2ant1 |  |-  ( ( f : U. A --> ( card ` T ) /\ x e. A /\ z e. x ) -> f Fn U. A ) | 
						
							| 99 | 51 | 3ad2ant2 |  |-  ( ( f : U. A --> ( card ` T ) /\ x e. A /\ z e. x ) -> x C_ U. A ) | 
						
							| 100 |  | simp3 |  |-  ( ( f : U. A --> ( card ` T ) /\ x e. A /\ z e. x ) -> z e. x ) | 
						
							| 101 |  | fnfvima |  |-  ( ( f Fn U. A /\ x C_ U. A /\ z e. x ) -> ( f ` z ) e. ( f " x ) ) | 
						
							| 102 | 98 99 100 101 | syl3anc |  |-  ( ( f : U. A --> ( card ` T ) /\ x e. A /\ z e. x ) -> ( f ` z ) e. ( f " x ) ) | 
						
							| 103 | 96 102 | sseldd |  |-  ( ( f : U. A --> ( card ` T ) /\ x e. A /\ z e. x ) -> ( f ` z ) e. U_ x e. A ( f " x ) ) | 
						
							| 104 | 103 | 3exp |  |-  ( f : U. A --> ( card ` T ) -> ( x e. A -> ( z e. x -> ( f ` z ) e. U_ x e. A ( f " x ) ) ) ) | 
						
							| 105 | 92 94 104 | rexlimd |  |-  ( f : U. A --> ( card ` T ) -> ( E. x e. A z e. x -> ( f ` z ) e. U_ x e. A ( f " x ) ) ) | 
						
							| 106 | 91 105 | biimtrid |  |-  ( f : U. A --> ( card ` T ) -> ( z e. U. A -> ( f ` z ) e. U_ x e. A ( f " x ) ) ) | 
						
							| 107 |  | eleq1a |  |-  ( ( f ` z ) e. U_ x e. A ( f " x ) -> ( y = ( f ` z ) -> y e. U_ x e. A ( f " x ) ) ) | 
						
							| 108 | 106 107 | syl6 |  |-  ( f : U. A --> ( card ` T ) -> ( z e. U. A -> ( y = ( f ` z ) -> y e. U_ x e. A ( f " x ) ) ) ) | 
						
							| 109 | 108 | rexlimdv |  |-  ( f : U. A --> ( card ` T ) -> ( E. z e. U. A y = ( f ` z ) -> y e. U_ x e. A ( f " x ) ) ) | 
						
							| 110 | 88 90 109 | sylsyld |  |-  ( f : U. A -onto-> ( card ` T ) -> ( y e. ( card ` T ) -> y e. U_ x e. A ( f " x ) ) ) | 
						
							| 111 | 45 110 | syl |  |-  ( f : U. A -1-1-onto-> ( card ` T ) -> ( y e. ( card ` T ) -> y e. U_ x e. A ( f " x ) ) ) | 
						
							| 112 | 111 | ssrdv |  |-  ( f : U. A -1-1-onto-> ( card ` T ) -> ( card ` T ) C_ U_ x e. A ( f " x ) ) | 
						
							| 113 | 87 112 | eqssd |  |-  ( f : U. A -1-1-onto-> ( card ` T ) -> U_ x e. A ( f " x ) = ( card ` T ) ) | 
						
							| 114 | 84 113 | eqtr3id |  |-  ( f : U. A -1-1-onto-> ( card ` T ) -> U. { z | E. x e. A z = ( f " x ) } = ( card ` T ) ) | 
						
							| 115 | 114 | necon3ai |  |-  ( U. { z | E. x e. A z = ( f " x ) } =/= ( card ` T ) -> -. f : U. A -1-1-onto-> ( card ` T ) ) | 
						
							| 116 | 83 115 | syl |  |-  ( ( ( T e. Tarski /\ Tr T /\ A e. T ) /\ f : U. A -1-1-onto-> ( card ` T ) ) -> -. f : U. A -1-1-onto-> ( card ` T ) ) | 
						
							| 117 | 116 | pm2.01da |  |-  ( ( T e. Tarski /\ Tr T /\ A e. T ) -> -. f : U. A -1-1-onto-> ( card ` T ) ) | 
						
							| 118 | 117 | nexdv |  |-  ( ( T e. Tarski /\ Tr T /\ A e. T ) -> -. E. f f : U. A -1-1-onto-> ( card ` T ) ) | 
						
							| 119 |  | entr |  |-  ( ( U. A ~~ T /\ T ~~ ( card ` T ) ) -> U. A ~~ ( card ` T ) ) | 
						
							| 120 | 3 119 | sylan2 |  |-  ( ( U. A ~~ T /\ T e. Tarski ) -> U. A ~~ ( card ` T ) ) | 
						
							| 121 |  | bren |  |-  ( U. A ~~ ( card ` T ) <-> E. f f : U. A -1-1-onto-> ( card ` T ) ) | 
						
							| 122 | 120 121 | sylib |  |-  ( ( U. A ~~ T /\ T e. Tarski ) -> E. f f : U. A -1-1-onto-> ( card ` T ) ) | 
						
							| 123 | 122 | expcom |  |-  ( T e. Tarski -> ( U. A ~~ T -> E. f f : U. A -1-1-onto-> ( card ` T ) ) ) | 
						
							| 124 | 123 | 3ad2ant1 |  |-  ( ( T e. Tarski /\ Tr T /\ A e. T ) -> ( U. A ~~ T -> E. f f : U. A -1-1-onto-> ( card ` T ) ) ) | 
						
							| 125 | 118 124 | mtod |  |-  ( ( T e. Tarski /\ Tr T /\ A e. T ) -> -. U. A ~~ T ) | 
						
							| 126 |  | uniss |  |-  ( A C_ T -> U. A C_ U. T ) | 
						
							| 127 |  | df-tr |  |-  ( Tr T <-> U. T C_ T ) | 
						
							| 128 | 127 | biimpi |  |-  ( Tr T -> U. T C_ T ) | 
						
							| 129 | 126 128 | sylan9ss |  |-  ( ( A C_ T /\ Tr T ) -> U. A C_ T ) | 
						
							| 130 | 129 | expcom |  |-  ( Tr T -> ( A C_ T -> U. A C_ T ) ) | 
						
							| 131 | 57 130 | syld |  |-  ( Tr T -> ( A e. T -> U. A C_ T ) ) | 
						
							| 132 | 131 | imp |  |-  ( ( Tr T /\ A e. T ) -> U. A C_ T ) | 
						
							| 133 |  | tsken |  |-  ( ( T e. Tarski /\ U. A C_ T ) -> ( U. A ~~ T \/ U. A e. T ) ) | 
						
							| 134 | 132 133 | sylan2 |  |-  ( ( T e. Tarski /\ ( Tr T /\ A e. T ) ) -> ( U. A ~~ T \/ U. A e. T ) ) | 
						
							| 135 | 134 | 3impb |  |-  ( ( T e. Tarski /\ Tr T /\ A e. T ) -> ( U. A ~~ T \/ U. A e. T ) ) | 
						
							| 136 | 135 | ord |  |-  ( ( T e. Tarski /\ Tr T /\ A e. T ) -> ( -. U. A ~~ T -> U. A e. T ) ) | 
						
							| 137 | 125 136 | mpd |  |-  ( ( T e. Tarski /\ Tr T /\ A e. T ) -> U. A e. T ) |