Step |
Hyp |
Ref |
Expression |
1 |
|
simp1l |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> T e. Tarski ) |
2 |
|
simp1r |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> Tr T ) |
3 |
|
frn |
|- ( F : A --> T -> ran F C_ T ) |
4 |
3
|
3ad2ant3 |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> ran F C_ T ) |
5 |
|
tskwe2 |
|- ( T e. Tarski -> T e. dom card ) |
6 |
1 5
|
syl |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> T e. dom card ) |
7 |
|
simp2 |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> A e. T ) |
8 |
|
trss |
|- ( Tr T -> ( A e. T -> A C_ T ) ) |
9 |
2 7 8
|
sylc |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> A C_ T ) |
10 |
|
ssnum |
|- ( ( T e. dom card /\ A C_ T ) -> A e. dom card ) |
11 |
6 9 10
|
syl2anc |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> A e. dom card ) |
12 |
|
ffn |
|- ( F : A --> T -> F Fn A ) |
13 |
|
dffn4 |
|- ( F Fn A <-> F : A -onto-> ran F ) |
14 |
12 13
|
sylib |
|- ( F : A --> T -> F : A -onto-> ran F ) |
15 |
14
|
3ad2ant3 |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> F : A -onto-> ran F ) |
16 |
|
fodomnum |
|- ( A e. dom card -> ( F : A -onto-> ran F -> ran F ~<_ A ) ) |
17 |
11 15 16
|
sylc |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> ran F ~<_ A ) |
18 |
|
tsksdom |
|- ( ( T e. Tarski /\ A e. T ) -> A ~< T ) |
19 |
1 7 18
|
syl2anc |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> A ~< T ) |
20 |
|
domsdomtr |
|- ( ( ran F ~<_ A /\ A ~< T ) -> ran F ~< T ) |
21 |
17 19 20
|
syl2anc |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> ran F ~< T ) |
22 |
|
tskssel |
|- ( ( T e. Tarski /\ ran F C_ T /\ ran F ~< T ) -> ran F e. T ) |
23 |
1 4 21 22
|
syl3anc |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> ran F e. T ) |
24 |
|
tskuni |
|- ( ( T e. Tarski /\ Tr T /\ ran F e. T ) -> U. ran F e. T ) |
25 |
1 2 23 24
|
syl3anc |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> U. ran F e. T ) |