| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1l |  |-  ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> T e. Tarski ) | 
						
							| 2 |  | simp1r |  |-  ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> Tr T ) | 
						
							| 3 |  | frn |  |-  ( F : A --> T -> ran F C_ T ) | 
						
							| 4 | 3 | 3ad2ant3 |  |-  ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> ran F C_ T ) | 
						
							| 5 |  | tskwe2 |  |-  ( T e. Tarski -> T e. dom card ) | 
						
							| 6 | 1 5 | syl |  |-  ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> T e. dom card ) | 
						
							| 7 |  | simp2 |  |-  ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> A e. T ) | 
						
							| 8 |  | trss |  |-  ( Tr T -> ( A e. T -> A C_ T ) ) | 
						
							| 9 | 2 7 8 | sylc |  |-  ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> A C_ T ) | 
						
							| 10 |  | ssnum |  |-  ( ( T e. dom card /\ A C_ T ) -> A e. dom card ) | 
						
							| 11 | 6 9 10 | syl2anc |  |-  ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> A e. dom card ) | 
						
							| 12 |  | ffn |  |-  ( F : A --> T -> F Fn A ) | 
						
							| 13 |  | dffn4 |  |-  ( F Fn A <-> F : A -onto-> ran F ) | 
						
							| 14 | 12 13 | sylib |  |-  ( F : A --> T -> F : A -onto-> ran F ) | 
						
							| 15 | 14 | 3ad2ant3 |  |-  ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> F : A -onto-> ran F ) | 
						
							| 16 |  | fodomnum |  |-  ( A e. dom card -> ( F : A -onto-> ran F -> ran F ~<_ A ) ) | 
						
							| 17 | 11 15 16 | sylc |  |-  ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> ran F ~<_ A ) | 
						
							| 18 |  | tsksdom |  |-  ( ( T e. Tarski /\ A e. T ) -> A ~< T ) | 
						
							| 19 | 1 7 18 | syl2anc |  |-  ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> A ~< T ) | 
						
							| 20 |  | domsdomtr |  |-  ( ( ran F ~<_ A /\ A ~< T ) -> ran F ~< T ) | 
						
							| 21 | 17 19 20 | syl2anc |  |-  ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> ran F ~< T ) | 
						
							| 22 |  | tskssel |  |-  ( ( T e. Tarski /\ ran F C_ T /\ ran F ~< T ) -> ran F e. T ) | 
						
							| 23 | 1 4 21 22 | syl3anc |  |-  ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> ran F e. T ) | 
						
							| 24 |  | tskuni |  |-  ( ( T e. Tarski /\ Tr T /\ ran F e. T ) -> U. ran F e. T ) | 
						
							| 25 | 1 2 23 24 | syl3anc |  |-  ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> U. ran F e. T ) |