Step |
Hyp |
Ref |
Expression |
1 |
|
pwexg |
|- ( A e. V -> ~P A e. _V ) |
2 |
|
rabexg |
|- ( ~P A e. _V -> { x e. ~P A | x ~< A } e. _V ) |
3 |
|
incom |
|- ( { x e. ~P A | x ~< A } i^i On ) = ( On i^i { x e. ~P A | x ~< A } ) |
4 |
|
inex1g |
|- ( { x e. ~P A | x ~< A } e. _V -> ( { x e. ~P A | x ~< A } i^i On ) e. _V ) |
5 |
3 4
|
eqeltrrid |
|- ( { x e. ~P A | x ~< A } e. _V -> ( On i^i { x e. ~P A | x ~< A } ) e. _V ) |
6 |
|
inss1 |
|- ( On i^i { x e. ~P A | x ~< A } ) C_ On |
7 |
6
|
sseli |
|- ( z e. ( On i^i { x e. ~P A | x ~< A } ) -> z e. On ) |
8 |
|
onelon |
|- ( ( z e. On /\ y e. z ) -> y e. On ) |
9 |
8
|
ancoms |
|- ( ( y e. z /\ z e. On ) -> y e. On ) |
10 |
7 9
|
sylan2 |
|- ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> y e. On ) |
11 |
|
onelss |
|- ( z e. On -> ( y e. z -> y C_ z ) ) |
12 |
11
|
impcom |
|- ( ( y e. z /\ z e. On ) -> y C_ z ) |
13 |
7 12
|
sylan2 |
|- ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> y C_ z ) |
14 |
|
inss2 |
|- ( On i^i { x e. ~P A | x ~< A } ) C_ { x e. ~P A | x ~< A } |
15 |
14
|
sseli |
|- ( z e. ( On i^i { x e. ~P A | x ~< A } ) -> z e. { x e. ~P A | x ~< A } ) |
16 |
|
breq1 |
|- ( x = z -> ( x ~< A <-> z ~< A ) ) |
17 |
16
|
elrab |
|- ( z e. { x e. ~P A | x ~< A } <-> ( z e. ~P A /\ z ~< A ) ) |
18 |
15 17
|
sylib |
|- ( z e. ( On i^i { x e. ~P A | x ~< A } ) -> ( z e. ~P A /\ z ~< A ) ) |
19 |
18
|
simpld |
|- ( z e. ( On i^i { x e. ~P A | x ~< A } ) -> z e. ~P A ) |
20 |
19
|
elpwid |
|- ( z e. ( On i^i { x e. ~P A | x ~< A } ) -> z C_ A ) |
21 |
20
|
adantl |
|- ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> z C_ A ) |
22 |
13 21
|
sstrd |
|- ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> y C_ A ) |
23 |
|
velpw |
|- ( y e. ~P A <-> y C_ A ) |
24 |
22 23
|
sylibr |
|- ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> y e. ~P A ) |
25 |
|
vex |
|- z e. _V |
26 |
|
ssdomg |
|- ( z e. _V -> ( y C_ z -> y ~<_ z ) ) |
27 |
25 13 26
|
mpsyl |
|- ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> y ~<_ z ) |
28 |
18
|
simprd |
|- ( z e. ( On i^i { x e. ~P A | x ~< A } ) -> z ~< A ) |
29 |
28
|
adantl |
|- ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> z ~< A ) |
30 |
|
domsdomtr |
|- ( ( y ~<_ z /\ z ~< A ) -> y ~< A ) |
31 |
27 29 30
|
syl2anc |
|- ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> y ~< A ) |
32 |
|
breq1 |
|- ( x = y -> ( x ~< A <-> y ~< A ) ) |
33 |
32
|
elrab |
|- ( y e. { x e. ~P A | x ~< A } <-> ( y e. ~P A /\ y ~< A ) ) |
34 |
24 31 33
|
sylanbrc |
|- ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> y e. { x e. ~P A | x ~< A } ) |
35 |
10 34
|
elind |
|- ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> y e. ( On i^i { x e. ~P A | x ~< A } ) ) |
36 |
35
|
gen2 |
|- A. y A. z ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> y e. ( On i^i { x e. ~P A | x ~< A } ) ) |
37 |
|
dftr2 |
|- ( Tr ( On i^i { x e. ~P A | x ~< A } ) <-> A. y A. z ( ( y e. z /\ z e. ( On i^i { x e. ~P A | x ~< A } ) ) -> y e. ( On i^i { x e. ~P A | x ~< A } ) ) ) |
38 |
36 37
|
mpbir |
|- Tr ( On i^i { x e. ~P A | x ~< A } ) |
39 |
|
ordon |
|- Ord On |
40 |
|
trssord |
|- ( ( Tr ( On i^i { x e. ~P A | x ~< A } ) /\ ( On i^i { x e. ~P A | x ~< A } ) C_ On /\ Ord On ) -> Ord ( On i^i { x e. ~P A | x ~< A } ) ) |
41 |
38 6 39 40
|
mp3an |
|- Ord ( On i^i { x e. ~P A | x ~< A } ) |
42 |
|
elong |
|- ( ( On i^i { x e. ~P A | x ~< A } ) e. _V -> ( ( On i^i { x e. ~P A | x ~< A } ) e. On <-> Ord ( On i^i { x e. ~P A | x ~< A } ) ) ) |
43 |
41 42
|
mpbiri |
|- ( ( On i^i { x e. ~P A | x ~< A } ) e. _V -> ( On i^i { x e. ~P A | x ~< A } ) e. On ) |
44 |
1 2 5 43
|
4syl |
|- ( A e. V -> ( On i^i { x e. ~P A | x ~< A } ) e. On ) |
45 |
44
|
adantr |
|- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> ( On i^i { x e. ~P A | x ~< A } ) e. On ) |
46 |
|
simpr |
|- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> { x e. ~P A | x ~< A } C_ A ) |
47 |
14 46
|
sstrid |
|- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> ( On i^i { x e. ~P A | x ~< A } ) C_ A ) |
48 |
|
ssdomg |
|- ( A e. V -> ( ( On i^i { x e. ~P A | x ~< A } ) C_ A -> ( On i^i { x e. ~P A | x ~< A } ) ~<_ A ) ) |
49 |
48
|
adantr |
|- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> ( ( On i^i { x e. ~P A | x ~< A } ) C_ A -> ( On i^i { x e. ~P A | x ~< A } ) ~<_ A ) ) |
50 |
47 49
|
mpd |
|- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> ( On i^i { x e. ~P A | x ~< A } ) ~<_ A ) |
51 |
|
ordirr |
|- ( Ord ( On i^i { x e. ~P A | x ~< A } ) -> -. ( On i^i { x e. ~P A | x ~< A } ) e. ( On i^i { x e. ~P A | x ~< A } ) ) |
52 |
41 51
|
mp1i |
|- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> -. ( On i^i { x e. ~P A | x ~< A } ) e. ( On i^i { x e. ~P A | x ~< A } ) ) |
53 |
44
|
3ad2ant1 |
|- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A /\ ( On i^i { x e. ~P A | x ~< A } ) ~< A ) -> ( On i^i { x e. ~P A | x ~< A } ) e. On ) |
54 |
|
elpw2g |
|- ( A e. V -> ( ( On i^i { x e. ~P A | x ~< A } ) e. ~P A <-> ( On i^i { x e. ~P A | x ~< A } ) C_ A ) ) |
55 |
54
|
adantr |
|- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> ( ( On i^i { x e. ~P A | x ~< A } ) e. ~P A <-> ( On i^i { x e. ~P A | x ~< A } ) C_ A ) ) |
56 |
47 55
|
mpbird |
|- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> ( On i^i { x e. ~P A | x ~< A } ) e. ~P A ) |
57 |
56
|
3adant3 |
|- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A /\ ( On i^i { x e. ~P A | x ~< A } ) ~< A ) -> ( On i^i { x e. ~P A | x ~< A } ) e. ~P A ) |
58 |
|
simp3 |
|- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A /\ ( On i^i { x e. ~P A | x ~< A } ) ~< A ) -> ( On i^i { x e. ~P A | x ~< A } ) ~< A ) |
59 |
|
nfcv |
|- F/_ x On |
60 |
|
nfrab1 |
|- F/_ x { x e. ~P A | x ~< A } |
61 |
59 60
|
nfin |
|- F/_ x ( On i^i { x e. ~P A | x ~< A } ) |
62 |
|
nfcv |
|- F/_ x ~P A |
63 |
|
nfcv |
|- F/_ x ~< |
64 |
|
nfcv |
|- F/_ x A |
65 |
61 63 64
|
nfbr |
|- F/ x ( On i^i { x e. ~P A | x ~< A } ) ~< A |
66 |
|
breq1 |
|- ( x = ( On i^i { x e. ~P A | x ~< A } ) -> ( x ~< A <-> ( On i^i { x e. ~P A | x ~< A } ) ~< A ) ) |
67 |
61 62 65 66
|
elrabf |
|- ( ( On i^i { x e. ~P A | x ~< A } ) e. { x e. ~P A | x ~< A } <-> ( ( On i^i { x e. ~P A | x ~< A } ) e. ~P A /\ ( On i^i { x e. ~P A | x ~< A } ) ~< A ) ) |
68 |
57 58 67
|
sylanbrc |
|- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A /\ ( On i^i { x e. ~P A | x ~< A } ) ~< A ) -> ( On i^i { x e. ~P A | x ~< A } ) e. { x e. ~P A | x ~< A } ) |
69 |
53 68
|
elind |
|- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A /\ ( On i^i { x e. ~P A | x ~< A } ) ~< A ) -> ( On i^i { x e. ~P A | x ~< A } ) e. ( On i^i { x e. ~P A | x ~< A } ) ) |
70 |
69
|
3expia |
|- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> ( ( On i^i { x e. ~P A | x ~< A } ) ~< A -> ( On i^i { x e. ~P A | x ~< A } ) e. ( On i^i { x e. ~P A | x ~< A } ) ) ) |
71 |
52 70
|
mtod |
|- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> -. ( On i^i { x e. ~P A | x ~< A } ) ~< A ) |
72 |
|
bren2 |
|- ( ( On i^i { x e. ~P A | x ~< A } ) ~~ A <-> ( ( On i^i { x e. ~P A | x ~< A } ) ~<_ A /\ -. ( On i^i { x e. ~P A | x ~< A } ) ~< A ) ) |
73 |
50 71 72
|
sylanbrc |
|- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> ( On i^i { x e. ~P A | x ~< A } ) ~~ A ) |
74 |
|
isnumi |
|- ( ( ( On i^i { x e. ~P A | x ~< A } ) e. On /\ ( On i^i { x e. ~P A | x ~< A } ) ~~ A ) -> A e. dom card ) |
75 |
45 73 74
|
syl2anc |
|- ( ( A e. V /\ { x e. ~P A | x ~< A } C_ A ) -> A e. dom card ) |