Step |
Hyp |
Ref |
Expression |
1 |
|
tsmsinv.b |
|- B = ( Base ` G ) |
2 |
|
tsmsinv.p |
|- I = ( invg ` G ) |
3 |
|
tsmsinv.1 |
|- ( ph -> G e. CMnd ) |
4 |
|
tsmsinv.2 |
|- ( ph -> G e. TopGrp ) |
5 |
|
tsmsinv.a |
|- ( ph -> A e. V ) |
6 |
|
tsmsinv.f |
|- ( ph -> F : A --> B ) |
7 |
|
tsmsinv.x |
|- ( ph -> X e. ( G tsums F ) ) |
8 |
|
eqid |
|- ( TopOpen ` G ) = ( TopOpen ` G ) |
9 |
|
tgptps |
|- ( G e. TopGrp -> G e. TopSp ) |
10 |
4 9
|
syl |
|- ( ph -> G e. TopSp ) |
11 |
|
tgpgrp |
|- ( G e. TopGrp -> G e. Grp ) |
12 |
4 11
|
syl |
|- ( ph -> G e. Grp ) |
13 |
|
isabl |
|- ( G e. Abel <-> ( G e. Grp /\ G e. CMnd ) ) |
14 |
12 3 13
|
sylanbrc |
|- ( ph -> G e. Abel ) |
15 |
1 2
|
invghm |
|- ( G e. Abel <-> I e. ( G GrpHom G ) ) |
16 |
14 15
|
sylib |
|- ( ph -> I e. ( G GrpHom G ) ) |
17 |
|
ghmmhm |
|- ( I e. ( G GrpHom G ) -> I e. ( G MndHom G ) ) |
18 |
16 17
|
syl |
|- ( ph -> I e. ( G MndHom G ) ) |
19 |
8 2
|
tgpinv |
|- ( G e. TopGrp -> I e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) ) |
20 |
4 19
|
syl |
|- ( ph -> I e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) ) |
21 |
1 8 8 3 10 3 10 18 20 5 6 7
|
tsmsmhm |
|- ( ph -> ( I ` X ) e. ( G tsums ( I o. F ) ) ) |