Step |
Hyp |
Ref |
Expression |
1 |
|
tsmslem1.b |
|- B = ( Base ` G ) |
2 |
|
tsmslem1.s |
|- S = ( ~P A i^i Fin ) |
3 |
|
tsmslem1.1 |
|- ( ph -> G e. CMnd ) |
4 |
|
tsmslem1.a |
|- ( ph -> A e. W ) |
5 |
|
tsmslem1.f |
|- ( ph -> F : A --> B ) |
6 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
7 |
3
|
adantr |
|- ( ( ph /\ X e. S ) -> G e. CMnd ) |
8 |
|
simpr |
|- ( ( ph /\ X e. S ) -> X e. S ) |
9 |
5
|
adantr |
|- ( ( ph /\ X e. S ) -> F : A --> B ) |
10 |
8 2
|
eleqtrdi |
|- ( ( ph /\ X e. S ) -> X e. ( ~P A i^i Fin ) ) |
11 |
|
elfpw |
|- ( X e. ( ~P A i^i Fin ) <-> ( X C_ A /\ X e. Fin ) ) |
12 |
11
|
simplbi |
|- ( X e. ( ~P A i^i Fin ) -> X C_ A ) |
13 |
10 12
|
syl |
|- ( ( ph /\ X e. S ) -> X C_ A ) |
14 |
9 13
|
fssresd |
|- ( ( ph /\ X e. S ) -> ( F |` X ) : X --> B ) |
15 |
10
|
elin2d |
|- ( ( ph /\ X e. S ) -> X e. Fin ) |
16 |
|
fvexd |
|- ( ( ph /\ X e. S ) -> ( 0g ` G ) e. _V ) |
17 |
14 15 16
|
fdmfifsupp |
|- ( ( ph /\ X e. S ) -> ( F |` X ) finSupp ( 0g ` G ) ) |
18 |
1 6 7 8 14 17
|
gsumcl |
|- ( ( ph /\ X e. S ) -> ( G gsum ( F |` X ) ) e. B ) |