| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tsmslem1.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | tsmslem1.s |  |-  S = ( ~P A i^i Fin ) | 
						
							| 3 |  | tsmslem1.1 |  |-  ( ph -> G e. CMnd ) | 
						
							| 4 |  | tsmslem1.a |  |-  ( ph -> A e. W ) | 
						
							| 5 |  | tsmslem1.f |  |-  ( ph -> F : A --> B ) | 
						
							| 6 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 7 | 3 | adantr |  |-  ( ( ph /\ X e. S ) -> G e. CMnd ) | 
						
							| 8 |  | simpr |  |-  ( ( ph /\ X e. S ) -> X e. S ) | 
						
							| 9 | 5 | adantr |  |-  ( ( ph /\ X e. S ) -> F : A --> B ) | 
						
							| 10 | 8 2 | eleqtrdi |  |-  ( ( ph /\ X e. S ) -> X e. ( ~P A i^i Fin ) ) | 
						
							| 11 |  | elfpw |  |-  ( X e. ( ~P A i^i Fin ) <-> ( X C_ A /\ X e. Fin ) ) | 
						
							| 12 | 11 | simplbi |  |-  ( X e. ( ~P A i^i Fin ) -> X C_ A ) | 
						
							| 13 | 10 12 | syl |  |-  ( ( ph /\ X e. S ) -> X C_ A ) | 
						
							| 14 | 9 13 | fssresd |  |-  ( ( ph /\ X e. S ) -> ( F |` X ) : X --> B ) | 
						
							| 15 | 10 | elin2d |  |-  ( ( ph /\ X e. S ) -> X e. Fin ) | 
						
							| 16 |  | fvexd |  |-  ( ( ph /\ X e. S ) -> ( 0g ` G ) e. _V ) | 
						
							| 17 | 14 15 16 | fdmfifsupp |  |-  ( ( ph /\ X e. S ) -> ( F |` X ) finSupp ( 0g ` G ) ) | 
						
							| 18 | 1 6 7 8 14 17 | gsumcl |  |-  ( ( ph /\ X e. S ) -> ( G gsum ( F |` X ) ) e. B ) |