Metamath Proof Explorer


Theorem tsmspropd

Description: The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd etc. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses tsmspropd.f
|- ( ph -> F e. V )
tsmspropd.g
|- ( ph -> G e. W )
tsmspropd.h
|- ( ph -> H e. X )
tsmspropd.b
|- ( ph -> ( Base ` G ) = ( Base ` H ) )
tsmspropd.p
|- ( ph -> ( +g ` G ) = ( +g ` H ) )
tsmspropd.j
|- ( ph -> ( TopOpen ` G ) = ( TopOpen ` H ) )
Assertion tsmspropd
|- ( ph -> ( G tsums F ) = ( H tsums F ) )

Proof

Step Hyp Ref Expression
1 tsmspropd.f
 |-  ( ph -> F e. V )
2 tsmspropd.g
 |-  ( ph -> G e. W )
3 tsmspropd.h
 |-  ( ph -> H e. X )
4 tsmspropd.b
 |-  ( ph -> ( Base ` G ) = ( Base ` H ) )
5 tsmspropd.p
 |-  ( ph -> ( +g ` G ) = ( +g ` H ) )
6 tsmspropd.j
 |-  ( ph -> ( TopOpen ` G ) = ( TopOpen ` H ) )
7 6 oveq1d
 |-  ( ph -> ( ( TopOpen ` G ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) = ( ( TopOpen ` H ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) )
8 resexg
 |-  ( F e. V -> ( F |` y ) e. _V )
9 1 8 syl
 |-  ( ph -> ( F |` y ) e. _V )
10 9 2 3 4 5 gsumpropd
 |-  ( ph -> ( G gsum ( F |` y ) ) = ( H gsum ( F |` y ) ) )
11 10 mpteq2dv
 |-  ( ph -> ( y e. ( ~P dom F i^i Fin ) |-> ( G gsum ( F |` y ) ) ) = ( y e. ( ~P dom F i^i Fin ) |-> ( H gsum ( F |` y ) ) ) )
12 7 11 fveq12d
 |-  ( ph -> ( ( ( TopOpen ` G ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) ` ( y e. ( ~P dom F i^i Fin ) |-> ( G gsum ( F |` y ) ) ) ) = ( ( ( TopOpen ` H ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) ` ( y e. ( ~P dom F i^i Fin ) |-> ( H gsum ( F |` y ) ) ) ) )
13 eqid
 |-  ( Base ` G ) = ( Base ` G )
14 eqid
 |-  ( TopOpen ` G ) = ( TopOpen ` G )
15 eqid
 |-  ( ~P dom F i^i Fin ) = ( ~P dom F i^i Fin )
16 eqid
 |-  ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) = ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } )
17 eqidd
 |-  ( ph -> dom F = dom F )
18 13 14 15 16 2 1 17 tsmsval2
 |-  ( ph -> ( G tsums F ) = ( ( ( TopOpen ` G ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) ` ( y e. ( ~P dom F i^i Fin ) |-> ( G gsum ( F |` y ) ) ) ) )
19 eqid
 |-  ( Base ` H ) = ( Base ` H )
20 eqid
 |-  ( TopOpen ` H ) = ( TopOpen ` H )
21 19 20 15 16 3 1 17 tsmsval2
 |-  ( ph -> ( H tsums F ) = ( ( ( TopOpen ` H ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) ` ( y e. ( ~P dom F i^i Fin ) |-> ( H gsum ( F |` y ) ) ) ) )
22 12 18 21 3eqtr4d
 |-  ( ph -> ( G tsums F ) = ( H tsums F ) )