| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tsmsval.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | tsmsval.j |  |-  J = ( TopOpen ` G ) | 
						
							| 3 |  | tsmsval.s |  |-  S = ( ~P A i^i Fin ) | 
						
							| 4 |  | tsmsval.l |  |-  L = ran ( z e. S |-> { y e. S | z C_ y } ) | 
						
							| 5 |  | tsmsval.g |  |-  ( ph -> G e. V ) | 
						
							| 6 |  | tsmsval2.f |  |-  ( ph -> F e. W ) | 
						
							| 7 |  | tsmsval2.a |  |-  ( ph -> dom F = A ) | 
						
							| 8 |  | df-tsms |  |-  tsums = ( w e. _V , f e. _V |-> [_ ( ~P dom f i^i Fin ) / s ]_ ( ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) ` ( y e. s |-> ( w gsum ( f |` y ) ) ) ) ) | 
						
							| 9 | 8 | a1i |  |-  ( ph -> tsums = ( w e. _V , f e. _V |-> [_ ( ~P dom f i^i Fin ) / s ]_ ( ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) ` ( y e. s |-> ( w gsum ( f |` y ) ) ) ) ) ) | 
						
							| 10 |  | vex |  |-  f e. _V | 
						
							| 11 | 10 | dmex |  |-  dom f e. _V | 
						
							| 12 | 11 | pwex |  |-  ~P dom f e. _V | 
						
							| 13 | 12 | inex1 |  |-  ( ~P dom f i^i Fin ) e. _V | 
						
							| 14 | 13 | a1i |  |-  ( ( ph /\ ( w = G /\ f = F ) ) -> ( ~P dom f i^i Fin ) e. _V ) | 
						
							| 15 |  | simplrl |  |-  ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> w = G ) | 
						
							| 16 | 15 | fveq2d |  |-  ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( TopOpen ` w ) = ( TopOpen ` G ) ) | 
						
							| 17 | 16 2 | eqtr4di |  |-  ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( TopOpen ` w ) = J ) | 
						
							| 18 |  | id |  |-  ( s = ( ~P dom f i^i Fin ) -> s = ( ~P dom f i^i Fin ) ) | 
						
							| 19 |  | simprr |  |-  ( ( ph /\ ( w = G /\ f = F ) ) -> f = F ) | 
						
							| 20 | 19 | dmeqd |  |-  ( ( ph /\ ( w = G /\ f = F ) ) -> dom f = dom F ) | 
						
							| 21 | 7 | adantr |  |-  ( ( ph /\ ( w = G /\ f = F ) ) -> dom F = A ) | 
						
							| 22 | 20 21 | eqtrd |  |-  ( ( ph /\ ( w = G /\ f = F ) ) -> dom f = A ) | 
						
							| 23 | 22 | pweqd |  |-  ( ( ph /\ ( w = G /\ f = F ) ) -> ~P dom f = ~P A ) | 
						
							| 24 | 23 | ineq1d |  |-  ( ( ph /\ ( w = G /\ f = F ) ) -> ( ~P dom f i^i Fin ) = ( ~P A i^i Fin ) ) | 
						
							| 25 | 24 3 | eqtr4di |  |-  ( ( ph /\ ( w = G /\ f = F ) ) -> ( ~P dom f i^i Fin ) = S ) | 
						
							| 26 | 18 25 | sylan9eqr |  |-  ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> s = S ) | 
						
							| 27 | 26 | rabeqdv |  |-  ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> { y e. s | z C_ y } = { y e. S | z C_ y } ) | 
						
							| 28 | 26 27 | mpteq12dv |  |-  ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( z e. s |-> { y e. s | z C_ y } ) = ( z e. S |-> { y e. S | z C_ y } ) ) | 
						
							| 29 | 28 | rneqd |  |-  ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ran ( z e. s |-> { y e. s | z C_ y } ) = ran ( z e. S |-> { y e. S | z C_ y } ) ) | 
						
							| 30 | 29 4 | eqtr4di |  |-  ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ran ( z e. s |-> { y e. s | z C_ y } ) = L ) | 
						
							| 31 | 26 30 | oveq12d |  |-  ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) = ( S filGen L ) ) | 
						
							| 32 | 17 31 | oveq12d |  |-  ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) = ( J fLimf ( S filGen L ) ) ) | 
						
							| 33 |  | simplrr |  |-  ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> f = F ) | 
						
							| 34 | 33 | reseq1d |  |-  ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( f |` y ) = ( F |` y ) ) | 
						
							| 35 | 15 34 | oveq12d |  |-  ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( w gsum ( f |` y ) ) = ( G gsum ( F |` y ) ) ) | 
						
							| 36 | 26 35 | mpteq12dv |  |-  ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( y e. s |-> ( w gsum ( f |` y ) ) ) = ( y e. S |-> ( G gsum ( F |` y ) ) ) ) | 
						
							| 37 | 32 36 | fveq12d |  |-  ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) ` ( y e. s |-> ( w gsum ( f |` y ) ) ) ) = ( ( J fLimf ( S filGen L ) ) ` ( y e. S |-> ( G gsum ( F |` y ) ) ) ) ) | 
						
							| 38 | 14 37 | csbied |  |-  ( ( ph /\ ( w = G /\ f = F ) ) -> [_ ( ~P dom f i^i Fin ) / s ]_ ( ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) ` ( y e. s |-> ( w gsum ( f |` y ) ) ) ) = ( ( J fLimf ( S filGen L ) ) ` ( y e. S |-> ( G gsum ( F |` y ) ) ) ) ) | 
						
							| 39 | 5 | elexd |  |-  ( ph -> G e. _V ) | 
						
							| 40 | 6 | elexd |  |-  ( ph -> F e. _V ) | 
						
							| 41 |  | fvexd |  |-  ( ph -> ( ( J fLimf ( S filGen L ) ) ` ( y e. S |-> ( G gsum ( F |` y ) ) ) ) e. _V ) | 
						
							| 42 | 9 38 39 40 41 | ovmpod |  |-  ( ph -> ( G tsums F ) = ( ( J fLimf ( S filGen L ) ) ` ( y e. S |-> ( G gsum ( F |` y ) ) ) ) ) |