Step |
Hyp |
Ref |
Expression |
1 |
|
tsmsval.b |
|- B = ( Base ` G ) |
2 |
|
tsmsval.j |
|- J = ( TopOpen ` G ) |
3 |
|
tsmsval.s |
|- S = ( ~P A i^i Fin ) |
4 |
|
tsmsval.l |
|- L = ran ( z e. S |-> { y e. S | z C_ y } ) |
5 |
|
tsmsval.g |
|- ( ph -> G e. V ) |
6 |
|
tsmsval2.f |
|- ( ph -> F e. W ) |
7 |
|
tsmsval2.a |
|- ( ph -> dom F = A ) |
8 |
|
df-tsms |
|- tsums = ( w e. _V , f e. _V |-> [_ ( ~P dom f i^i Fin ) / s ]_ ( ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) ` ( y e. s |-> ( w gsum ( f |` y ) ) ) ) ) |
9 |
8
|
a1i |
|- ( ph -> tsums = ( w e. _V , f e. _V |-> [_ ( ~P dom f i^i Fin ) / s ]_ ( ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) ` ( y e. s |-> ( w gsum ( f |` y ) ) ) ) ) ) |
10 |
|
vex |
|- f e. _V |
11 |
10
|
dmex |
|- dom f e. _V |
12 |
11
|
pwex |
|- ~P dom f e. _V |
13 |
12
|
inex1 |
|- ( ~P dom f i^i Fin ) e. _V |
14 |
13
|
a1i |
|- ( ( ph /\ ( w = G /\ f = F ) ) -> ( ~P dom f i^i Fin ) e. _V ) |
15 |
|
simplrl |
|- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> w = G ) |
16 |
15
|
fveq2d |
|- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( TopOpen ` w ) = ( TopOpen ` G ) ) |
17 |
16 2
|
eqtr4di |
|- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( TopOpen ` w ) = J ) |
18 |
|
id |
|- ( s = ( ~P dom f i^i Fin ) -> s = ( ~P dom f i^i Fin ) ) |
19 |
|
simprr |
|- ( ( ph /\ ( w = G /\ f = F ) ) -> f = F ) |
20 |
19
|
dmeqd |
|- ( ( ph /\ ( w = G /\ f = F ) ) -> dom f = dom F ) |
21 |
7
|
adantr |
|- ( ( ph /\ ( w = G /\ f = F ) ) -> dom F = A ) |
22 |
20 21
|
eqtrd |
|- ( ( ph /\ ( w = G /\ f = F ) ) -> dom f = A ) |
23 |
22
|
pweqd |
|- ( ( ph /\ ( w = G /\ f = F ) ) -> ~P dom f = ~P A ) |
24 |
23
|
ineq1d |
|- ( ( ph /\ ( w = G /\ f = F ) ) -> ( ~P dom f i^i Fin ) = ( ~P A i^i Fin ) ) |
25 |
24 3
|
eqtr4di |
|- ( ( ph /\ ( w = G /\ f = F ) ) -> ( ~P dom f i^i Fin ) = S ) |
26 |
18 25
|
sylan9eqr |
|- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> s = S ) |
27 |
26
|
rabeqdv |
|- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> { y e. s | z C_ y } = { y e. S | z C_ y } ) |
28 |
26 27
|
mpteq12dv |
|- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( z e. s |-> { y e. s | z C_ y } ) = ( z e. S |-> { y e. S | z C_ y } ) ) |
29 |
28
|
rneqd |
|- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ran ( z e. s |-> { y e. s | z C_ y } ) = ran ( z e. S |-> { y e. S | z C_ y } ) ) |
30 |
29 4
|
eqtr4di |
|- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ran ( z e. s |-> { y e. s | z C_ y } ) = L ) |
31 |
26 30
|
oveq12d |
|- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) = ( S filGen L ) ) |
32 |
17 31
|
oveq12d |
|- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) = ( J fLimf ( S filGen L ) ) ) |
33 |
|
simplrr |
|- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> f = F ) |
34 |
33
|
reseq1d |
|- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( f |` y ) = ( F |` y ) ) |
35 |
15 34
|
oveq12d |
|- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( w gsum ( f |` y ) ) = ( G gsum ( F |` y ) ) ) |
36 |
26 35
|
mpteq12dv |
|- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( y e. s |-> ( w gsum ( f |` y ) ) ) = ( y e. S |-> ( G gsum ( F |` y ) ) ) ) |
37 |
32 36
|
fveq12d |
|- ( ( ( ph /\ ( w = G /\ f = F ) ) /\ s = ( ~P dom f i^i Fin ) ) -> ( ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) ` ( y e. s |-> ( w gsum ( f |` y ) ) ) ) = ( ( J fLimf ( S filGen L ) ) ` ( y e. S |-> ( G gsum ( F |` y ) ) ) ) ) |
38 |
14 37
|
csbied |
|- ( ( ph /\ ( w = G /\ f = F ) ) -> [_ ( ~P dom f i^i Fin ) / s ]_ ( ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) ` ( y e. s |-> ( w gsum ( f |` y ) ) ) ) = ( ( J fLimf ( S filGen L ) ) ` ( y e. S |-> ( G gsum ( F |` y ) ) ) ) ) |
39 |
5
|
elexd |
|- ( ph -> G e. _V ) |
40 |
6
|
elexd |
|- ( ph -> F e. _V ) |
41 |
|
fvexd |
|- ( ph -> ( ( J fLimf ( S filGen L ) ) ` ( y e. S |-> ( G gsum ( F |` y ) ) ) ) e. _V ) |
42 |
9 38 39 40 41
|
ovmpod |
|- ( ph -> ( G tsums F ) = ( ( J fLimf ( S filGen L ) ) ` ( y e. S |-> ( G gsum ( F |` y ) ) ) ) ) |