Step |
Hyp |
Ref |
Expression |
1 |
|
istsr.1 |
|- X = dom R |
2 |
|
breq2 |
|- ( C = if ( B R C , C , B ) -> ( A R C <-> A R if ( B R C , C , B ) ) ) |
3 |
2
|
bibi1d |
|- ( C = if ( B R C , C , B ) -> ( ( A R C <-> ( A R B \/ A R C ) ) <-> ( A R if ( B R C , C , B ) <-> ( A R B \/ A R C ) ) ) ) |
4 |
|
breq2 |
|- ( B = if ( B R C , C , B ) -> ( A R B <-> A R if ( B R C , C , B ) ) ) |
5 |
4
|
bibi1d |
|- ( B = if ( B R C , C , B ) -> ( ( A R B <-> ( A R B \/ A R C ) ) <-> ( A R if ( B R C , C , B ) <-> ( A R B \/ A R C ) ) ) ) |
6 |
|
olc |
|- ( A R C -> ( A R B \/ A R C ) ) |
7 |
|
eqid |
|- dom R = dom R |
8 |
7
|
istsr |
|- ( R e. TosetRel <-> ( R e. PosetRel /\ ( dom R X. dom R ) C_ ( R u. `' R ) ) ) |
9 |
8
|
simplbi |
|- ( R e. TosetRel -> R e. PosetRel ) |
10 |
|
pstr |
|- ( ( R e. PosetRel /\ A R B /\ B R C ) -> A R C ) |
11 |
10
|
3expib |
|- ( R e. PosetRel -> ( ( A R B /\ B R C ) -> A R C ) ) |
12 |
9 11
|
syl |
|- ( R e. TosetRel -> ( ( A R B /\ B R C ) -> A R C ) ) |
13 |
12
|
adantr |
|- ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A R B /\ B R C ) -> A R C ) ) |
14 |
13
|
expdimp |
|- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A R B ) -> ( B R C -> A R C ) ) |
15 |
14
|
impancom |
|- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ B R C ) -> ( A R B -> A R C ) ) |
16 |
|
idd |
|- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ B R C ) -> ( A R C -> A R C ) ) |
17 |
15 16
|
jaod |
|- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ B R C ) -> ( ( A R B \/ A R C ) -> A R C ) ) |
18 |
6 17
|
impbid2 |
|- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ B R C ) -> ( A R C <-> ( A R B \/ A R C ) ) ) |
19 |
|
orc |
|- ( A R B -> ( A R B \/ A R C ) ) |
20 |
|
idd |
|- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ -. B R C ) -> ( A R B -> A R B ) ) |
21 |
1
|
tsrlin |
|- ( ( R e. TosetRel /\ B e. X /\ C e. X ) -> ( B R C \/ C R B ) ) |
22 |
21
|
3adant3r1 |
|- ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B R C \/ C R B ) ) |
23 |
22
|
orcanai |
|- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ -. B R C ) -> C R B ) |
24 |
|
pstr |
|- ( ( R e. PosetRel /\ A R C /\ C R B ) -> A R B ) |
25 |
24
|
3expib |
|- ( R e. PosetRel -> ( ( A R C /\ C R B ) -> A R B ) ) |
26 |
9 25
|
syl |
|- ( R e. TosetRel -> ( ( A R C /\ C R B ) -> A R B ) ) |
27 |
26
|
adantr |
|- ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A R C /\ C R B ) -> A R B ) ) |
28 |
27
|
expdimp |
|- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A R C ) -> ( C R B -> A R B ) ) |
29 |
28
|
impancom |
|- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ C R B ) -> ( A R C -> A R B ) ) |
30 |
23 29
|
syldan |
|- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ -. B R C ) -> ( A R C -> A R B ) ) |
31 |
20 30
|
jaod |
|- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ -. B R C ) -> ( ( A R B \/ A R C ) -> A R B ) ) |
32 |
19 31
|
impbid2 |
|- ( ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ -. B R C ) -> ( A R B <-> ( A R B \/ A R C ) ) ) |
33 |
3 5 18 32
|
ifbothda |
|- ( ( R e. TosetRel /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A R if ( B R C , C , B ) <-> ( A R B \/ A R C ) ) ) |