| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ttgval.n | 
							 |-  G = ( toTG ` H )  | 
						
						
							| 2 | 
							
								
							 | 
							ttgplusg.1 | 
							 |-  .+ = ( +g ` H )  | 
						
						
							| 3 | 
							
								
							 | 
							plusgid | 
							 |-  +g = Slot ( +g ` ndx )  | 
						
						
							| 4 | 
							
								
							 | 
							slotslnbpsd | 
							 |-  ( ( ( LineG ` ndx ) =/= ( Base ` ndx ) /\ ( LineG ` ndx ) =/= ( +g ` ndx ) ) /\ ( ( LineG ` ndx ) =/= ( .s ` ndx ) /\ ( LineG ` ndx ) =/= ( dist ` ndx ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( LineG ` ndx ) =/= ( Base ` ndx ) /\ ( LineG ` ndx ) =/= ( +g ` ndx ) ) /\ ( ( LineG ` ndx ) =/= ( .s ` ndx ) /\ ( LineG ` ndx ) =/= ( dist ` ndx ) ) ) -> ( LineG ` ndx ) =/= ( +g ` ndx ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							ax-mp | 
							 |-  ( LineG ` ndx ) =/= ( +g ` ndx )  | 
						
						
							| 7 | 
							
								6
							 | 
							necomi | 
							 |-  ( +g ` ndx ) =/= ( LineG ` ndx )  | 
						
						
							| 8 | 
							
								
							 | 
							slotsinbpsd | 
							 |-  ( ( ( Itv ` ndx ) =/= ( Base ` ndx ) /\ ( Itv ` ndx ) =/= ( +g ` ndx ) ) /\ ( ( Itv ` ndx ) =/= ( .s ` ndx ) /\ ( Itv ` ndx ) =/= ( dist ` ndx ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( Itv ` ndx ) =/= ( Base ` ndx ) /\ ( Itv ` ndx ) =/= ( +g ` ndx ) ) /\ ( ( Itv ` ndx ) =/= ( .s ` ndx ) /\ ( Itv ` ndx ) =/= ( dist ` ndx ) ) ) -> ( Itv ` ndx ) =/= ( +g ` ndx ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							ax-mp | 
							 |-  ( Itv ` ndx ) =/= ( +g ` ndx )  | 
						
						
							| 11 | 
							
								10
							 | 
							necomi | 
							 |-  ( +g ` ndx ) =/= ( Itv ` ndx )  | 
						
						
							| 12 | 
							
								1 3 7 11
							 | 
							ttglem | 
							 |-  ( +g ` H ) = ( +g ` G )  | 
						
						
							| 13 | 
							
								2 12
							 | 
							eqtri | 
							 |-  .+ = ( +g ` G )  |