| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relres |  |-  Rel ( R |` _V ) | 
						
							| 2 |  | ssttrcl |  |-  ( Rel ( R |` _V ) -> ( R |` _V ) C_ t++ ( R |` _V ) ) | 
						
							| 3 |  | coss2 |  |-  ( ( R |` _V ) C_ t++ ( R |` _V ) -> ( t++ ( R |` _V ) o. ( R |` _V ) ) C_ ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) ) | 
						
							| 4 | 1 2 3 | mp2b |  |-  ( t++ ( R |` _V ) o. ( R |` _V ) ) C_ ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) | 
						
							| 5 |  | ttrcltr |  |-  ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) C_ t++ ( R |` _V ) | 
						
							| 6 | 4 5 | sstri |  |-  ( t++ ( R |` _V ) o. ( R |` _V ) ) C_ t++ ( R |` _V ) | 
						
							| 7 |  | relco |  |-  Rel ( t++ ( R |` _V ) o. R ) | 
						
							| 8 |  | dfrel3 |  |-  ( Rel ( t++ ( R |` _V ) o. R ) <-> ( ( t++ ( R |` _V ) o. R ) |` _V ) = ( t++ ( R |` _V ) o. R ) ) | 
						
							| 9 | 7 8 | mpbi |  |-  ( ( t++ ( R |` _V ) o. R ) |` _V ) = ( t++ ( R |` _V ) o. R ) | 
						
							| 10 |  | resco |  |-  ( ( t++ ( R |` _V ) o. R ) |` _V ) = ( t++ ( R |` _V ) o. ( R |` _V ) ) | 
						
							| 11 |  | ttrclresv |  |-  t++ ( R |` _V ) = t++ R | 
						
							| 12 | 11 | coeq1i |  |-  ( t++ ( R |` _V ) o. R ) = ( t++ R o. R ) | 
						
							| 13 | 9 10 12 | 3eqtr3i |  |-  ( t++ ( R |` _V ) o. ( R |` _V ) ) = ( t++ R o. R ) | 
						
							| 14 | 6 13 11 | 3sstr3i |  |-  ( t++ R o. R ) C_ t++ R |