| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq |
|- ( R = S -> ( ( f ` m ) R ( f ` suc m ) <-> ( f ` m ) S ( f ` suc m ) ) ) |
| 2 |
1
|
ralbidv |
|- ( R = S -> ( A. m e. n ( f ` m ) R ( f ` suc m ) <-> A. m e. n ( f ` m ) S ( f ` suc m ) ) ) |
| 3 |
2
|
3anbi3d |
|- ( R = S -> ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) <-> ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) S ( f ` suc m ) ) ) ) |
| 4 |
3
|
exbidv |
|- ( R = S -> ( E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) <-> E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) S ( f ` suc m ) ) ) ) |
| 5 |
4
|
rexbidv |
|- ( R = S -> ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) S ( f ` suc m ) ) ) ) |
| 6 |
5
|
opabbidv |
|- ( R = S -> { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) S ( f ` suc m ) ) } ) |
| 7 |
|
df-ttrcl |
|- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } |
| 8 |
|
df-ttrcl |
|- t++ S = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) S ( f ` suc m ) ) } |
| 9 |
6 7 8
|
3eqtr4g |
|- ( R = S -> t++ R = t++ S ) |