| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ttrclselem.1 |  |-  F = rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) | 
						
							| 2 |  | suceq |  |-  ( m = (/) -> suc m = suc (/) ) | 
						
							| 3 |  | df-1o |  |-  1o = suc (/) | 
						
							| 4 | 2 3 | eqtr4di |  |-  ( m = (/) -> suc m = 1o ) | 
						
							| 5 |  | suceq |  |-  ( suc m = 1o -> suc suc m = suc 1o ) | 
						
							| 6 | 4 5 | syl |  |-  ( m = (/) -> suc suc m = suc 1o ) | 
						
							| 7 | 6 | fneq2d |  |-  ( m = (/) -> ( f Fn suc suc m <-> f Fn suc 1o ) ) | 
						
							| 8 | 4 | fveqeq2d |  |-  ( m = (/) -> ( ( f ` suc m ) = X <-> ( f ` 1o ) = X ) ) | 
						
							| 9 | 8 | anbi2d |  |-  ( m = (/) -> ( ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) <-> ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) ) | 
						
							| 10 |  | df1o2 |  |-  1o = { (/) } | 
						
							| 11 | 4 10 | eqtrdi |  |-  ( m = (/) -> suc m = { (/) } ) | 
						
							| 12 | 11 | raleqdv |  |-  ( m = (/) -> ( A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) <-> A. a e. { (/) } ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) | 
						
							| 13 |  | 0ex |  |-  (/) e. _V | 
						
							| 14 |  | fveq2 |  |-  ( a = (/) -> ( f ` a ) = ( f ` (/) ) ) | 
						
							| 15 |  | suceq |  |-  ( a = (/) -> suc a = suc (/) ) | 
						
							| 16 | 15 3 | eqtr4di |  |-  ( a = (/) -> suc a = 1o ) | 
						
							| 17 | 16 | fveq2d |  |-  ( a = (/) -> ( f ` suc a ) = ( f ` 1o ) ) | 
						
							| 18 | 14 17 | breq12d |  |-  ( a = (/) -> ( ( f ` a ) ( R |` A ) ( f ` suc a ) <-> ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) ) | 
						
							| 19 | 13 18 | ralsn |  |-  ( A. a e. { (/) } ( f ` a ) ( R |` A ) ( f ` suc a ) <-> ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) | 
						
							| 20 | 12 19 | bitrdi |  |-  ( m = (/) -> ( A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) <-> ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) ) | 
						
							| 21 | 7 9 20 | 3anbi123d |  |-  ( m = (/) -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) ) ) | 
						
							| 22 | 21 | exbidv |  |-  ( m = (/) -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) ) ) | 
						
							| 23 |  | fveq2 |  |-  ( m = (/) -> ( F ` m ) = ( F ` (/) ) ) | 
						
							| 24 | 23 | eleq2d |  |-  ( m = (/) -> ( y e. ( F ` m ) <-> y e. ( F ` (/) ) ) ) | 
						
							| 25 | 22 24 | bibi12d |  |-  ( m = (/) -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> y e. ( F ` (/) ) ) ) ) | 
						
							| 26 | 25 | albidv |  |-  ( m = (/) -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> A. y ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> y e. ( F ` (/) ) ) ) ) | 
						
							| 27 | 26 | imbi2d |  |-  ( m = (/) -> ( ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) ) <-> ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> y e. ( F ` (/) ) ) ) ) ) | 
						
							| 28 |  | suceq |  |-  ( m = n -> suc m = suc n ) | 
						
							| 29 |  | suceq |  |-  ( suc m = suc n -> suc suc m = suc suc n ) | 
						
							| 30 | 28 29 | syl |  |-  ( m = n -> suc suc m = suc suc n ) | 
						
							| 31 | 30 | fneq2d |  |-  ( m = n -> ( f Fn suc suc m <-> f Fn suc suc n ) ) | 
						
							| 32 | 28 | fveqeq2d |  |-  ( m = n -> ( ( f ` suc m ) = X <-> ( f ` suc n ) = X ) ) | 
						
							| 33 | 32 | anbi2d |  |-  ( m = n -> ( ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) <-> ( ( f ` (/) ) = y /\ ( f ` suc n ) = X ) ) ) | 
						
							| 34 | 28 | raleqdv |  |-  ( m = n -> ( A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) <-> A. a e. suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) | 
						
							| 35 |  | fveq2 |  |-  ( a = c -> ( f ` a ) = ( f ` c ) ) | 
						
							| 36 |  | suceq |  |-  ( a = c -> suc a = suc c ) | 
						
							| 37 | 36 | fveq2d |  |-  ( a = c -> ( f ` suc a ) = ( f ` suc c ) ) | 
						
							| 38 | 35 37 | breq12d |  |-  ( a = c -> ( ( f ` a ) ( R |` A ) ( f ` suc a ) <-> ( f ` c ) ( R |` A ) ( f ` suc c ) ) ) | 
						
							| 39 | 38 | cbvralvw |  |-  ( A. a e. suc n ( f ` a ) ( R |` A ) ( f ` suc a ) <-> A. c e. suc n ( f ` c ) ( R |` A ) ( f ` suc c ) ) | 
						
							| 40 | 34 39 | bitrdi |  |-  ( m = n -> ( A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) <-> A. c e. suc n ( f ` c ) ( R |` A ) ( f ` suc c ) ) ) | 
						
							| 41 | 31 33 40 | 3anbi123d |  |-  ( m = n -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> ( f Fn suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc n ) = X ) /\ A. c e. suc n ( f ` c ) ( R |` A ) ( f ` suc c ) ) ) ) | 
						
							| 42 | 41 | exbidv |  |-  ( m = n -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc n ) = X ) /\ A. c e. suc n ( f ` c ) ( R |` A ) ( f ` suc c ) ) ) ) | 
						
							| 43 |  | fneq1 |  |-  ( f = g -> ( f Fn suc suc n <-> g Fn suc suc n ) ) | 
						
							| 44 |  | fveq1 |  |-  ( f = g -> ( f ` (/) ) = ( g ` (/) ) ) | 
						
							| 45 | 44 | eqeq1d |  |-  ( f = g -> ( ( f ` (/) ) = y <-> ( g ` (/) ) = y ) ) | 
						
							| 46 |  | fveq1 |  |-  ( f = g -> ( f ` suc n ) = ( g ` suc n ) ) | 
						
							| 47 | 46 | eqeq1d |  |-  ( f = g -> ( ( f ` suc n ) = X <-> ( g ` suc n ) = X ) ) | 
						
							| 48 | 45 47 | anbi12d |  |-  ( f = g -> ( ( ( f ` (/) ) = y /\ ( f ` suc n ) = X ) <-> ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) ) ) | 
						
							| 49 |  | fveq1 |  |-  ( f = g -> ( f ` c ) = ( g ` c ) ) | 
						
							| 50 |  | fveq1 |  |-  ( f = g -> ( f ` suc c ) = ( g ` suc c ) ) | 
						
							| 51 | 49 50 | breq12d |  |-  ( f = g -> ( ( f ` c ) ( R |` A ) ( f ` suc c ) <-> ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) | 
						
							| 52 | 51 | ralbidv |  |-  ( f = g -> ( A. c e. suc n ( f ` c ) ( R |` A ) ( f ` suc c ) <-> A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) | 
						
							| 53 | 43 48 52 | 3anbi123d |  |-  ( f = g -> ( ( f Fn suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc n ) = X ) /\ A. c e. suc n ( f ` c ) ( R |` A ) ( f ` suc c ) ) <-> ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) | 
						
							| 54 | 53 | cbvexvw |  |-  ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc n ) = X ) /\ A. c e. suc n ( f ` c ) ( R |` A ) ( f ` suc c ) ) <-> E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) | 
						
							| 55 | 42 54 | bitrdi |  |-  ( m = n -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) | 
						
							| 56 |  | fveq2 |  |-  ( m = n -> ( F ` m ) = ( F ` n ) ) | 
						
							| 57 | 56 | eleq2d |  |-  ( m = n -> ( y e. ( F ` m ) <-> y e. ( F ` n ) ) ) | 
						
							| 58 | 55 57 | bibi12d |  |-  ( m = n -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> y e. ( F ` n ) ) ) ) | 
						
							| 59 | 58 | albidv |  |-  ( m = n -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> A. y ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> y e. ( F ` n ) ) ) ) | 
						
							| 60 |  | eqeq2 |  |-  ( y = z -> ( ( g ` (/) ) = y <-> ( g ` (/) ) = z ) ) | 
						
							| 61 | 60 | anbi1d |  |-  ( y = z -> ( ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) <-> ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) ) ) | 
						
							| 62 | 61 | 3anbi2d |  |-  ( y = z -> ( ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) | 
						
							| 63 | 62 | exbidv |  |-  ( y = z -> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) | 
						
							| 64 |  | eleq1 |  |-  ( y = z -> ( y e. ( F ` n ) <-> z e. ( F ` n ) ) ) | 
						
							| 65 | 63 64 | bibi12d |  |-  ( y = z -> ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> y e. ( F ` n ) ) <-> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) ) | 
						
							| 66 | 65 | cbvalvw |  |-  ( A. y ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> y e. ( F ` n ) ) <-> A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) | 
						
							| 67 | 59 66 | bitrdi |  |-  ( m = n -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) ) | 
						
							| 68 | 67 | imbi2d |  |-  ( m = n -> ( ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) ) <-> ( ( R Se A /\ X e. A ) -> A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) ) ) | 
						
							| 69 |  | suceq |  |-  ( m = suc n -> suc m = suc suc n ) | 
						
							| 70 |  | suceq |  |-  ( suc m = suc suc n -> suc suc m = suc suc suc n ) | 
						
							| 71 | 69 70 | syl |  |-  ( m = suc n -> suc suc m = suc suc suc n ) | 
						
							| 72 | 71 | fneq2d |  |-  ( m = suc n -> ( f Fn suc suc m <-> f Fn suc suc suc n ) ) | 
						
							| 73 | 69 | fveqeq2d |  |-  ( m = suc n -> ( ( f ` suc m ) = X <-> ( f ` suc suc n ) = X ) ) | 
						
							| 74 | 73 | anbi2d |  |-  ( m = suc n -> ( ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) <-> ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) ) ) | 
						
							| 75 | 69 | raleqdv |  |-  ( m = suc n -> ( A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) <-> A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) | 
						
							| 76 | 72 74 75 | 3anbi123d |  |-  ( m = suc n -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) | 
						
							| 77 | 76 | exbidv |  |-  ( m = suc n -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) | 
						
							| 78 |  | fveq2 |  |-  ( m = suc n -> ( F ` m ) = ( F ` suc n ) ) | 
						
							| 79 | 78 | eleq2d |  |-  ( m = suc n -> ( y e. ( F ` m ) <-> y e. ( F ` suc n ) ) ) | 
						
							| 80 | 77 79 | bibi12d |  |-  ( m = suc n -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` suc n ) ) ) ) | 
						
							| 81 | 80 | albidv |  |-  ( m = suc n -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> A. y ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` suc n ) ) ) ) | 
						
							| 82 | 81 | imbi2d |  |-  ( m = suc n -> ( ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) ) <-> ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` suc n ) ) ) ) ) | 
						
							| 83 |  | suceq |  |-  ( m = N -> suc m = suc N ) | 
						
							| 84 |  | suceq |  |-  ( suc m = suc N -> suc suc m = suc suc N ) | 
						
							| 85 | 83 84 | syl |  |-  ( m = N -> suc suc m = suc suc N ) | 
						
							| 86 | 85 | fneq2d |  |-  ( m = N -> ( f Fn suc suc m <-> f Fn suc suc N ) ) | 
						
							| 87 | 83 | fveqeq2d |  |-  ( m = N -> ( ( f ` suc m ) = X <-> ( f ` suc N ) = X ) ) | 
						
							| 88 | 87 | anbi2d |  |-  ( m = N -> ( ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) <-> ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) ) ) | 
						
							| 89 | 83 | raleqdv |  |-  ( m = N -> ( A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) <-> A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) | 
						
							| 90 | 86 88 89 | 3anbi123d |  |-  ( m = N -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) | 
						
							| 91 | 90 | exbidv |  |-  ( m = N -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) | 
						
							| 92 |  | fveq2 |  |-  ( m = N -> ( F ` m ) = ( F ` N ) ) | 
						
							| 93 | 92 | eleq2d |  |-  ( m = N -> ( y e. ( F ` m ) <-> y e. ( F ` N ) ) ) | 
						
							| 94 | 91 93 | bibi12d |  |-  ( m = N -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> ( E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` N ) ) ) ) | 
						
							| 95 | 94 | albidv |  |-  ( m = N -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> A. y ( E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` N ) ) ) ) | 
						
							| 96 | 95 | imbi2d |  |-  ( m = N -> ( ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) ) <-> ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` N ) ) ) ) ) | 
						
							| 97 |  | eqeq2 |  |-  ( x = X -> ( ( f ` 1o ) = x <-> ( f ` 1o ) = X ) ) | 
						
							| 98 | 97 | anbi2d |  |-  ( x = X -> ( ( ( f ` (/) ) = y /\ ( f ` 1o ) = x ) <-> ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) ) | 
						
							| 99 | 98 | anbi2d |  |-  ( x = X -> ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = x ) ) <-> ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) ) ) | 
						
							| 100 | 99 | exbidv |  |-  ( x = X -> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = x ) ) <-> E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) ) ) | 
						
							| 101 |  | vex |  |-  y e. _V | 
						
							| 102 |  | vex |  |-  x e. _V | 
						
							| 103 | 101 102 | ifex |  |-  if ( b = (/) , y , x ) e. _V | 
						
							| 104 |  | eqid |  |-  ( b e. suc 1o |-> if ( b = (/) , y , x ) ) = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) | 
						
							| 105 | 103 104 | fnmpti |  |-  ( b e. suc 1o |-> if ( b = (/) , y , x ) ) Fn suc 1o | 
						
							| 106 |  | equid |  |-  y = y | 
						
							| 107 |  | equid |  |-  x = x | 
						
							| 108 | 106 107 | pm3.2i |  |-  ( y = y /\ x = x ) | 
						
							| 109 |  | 1oex |  |-  1o e. _V | 
						
							| 110 | 109 | sucex |  |-  suc 1o e. _V | 
						
							| 111 | 110 | mptex |  |-  ( b e. suc 1o |-> if ( b = (/) , y , x ) ) e. _V | 
						
							| 112 |  | fneq1 |  |-  ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( f Fn suc 1o <-> ( b e. suc 1o |-> if ( b = (/) , y , x ) ) Fn suc 1o ) ) | 
						
							| 113 |  | fveq1 |  |-  ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( f ` (/) ) = ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) ` (/) ) ) | 
						
							| 114 |  | 1on |  |-  1o e. On | 
						
							| 115 | 114 | onordi |  |-  Ord 1o | 
						
							| 116 |  | 0elsuc |  |-  ( Ord 1o -> (/) e. suc 1o ) | 
						
							| 117 |  | iftrue |  |-  ( b = (/) -> if ( b = (/) , y , x ) = y ) | 
						
							| 118 | 117 104 101 | fvmpt |  |-  ( (/) e. suc 1o -> ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) ` (/) ) = y ) | 
						
							| 119 | 115 116 118 | mp2b |  |-  ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) ` (/) ) = y | 
						
							| 120 | 113 119 | eqtrdi |  |-  ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( f ` (/) ) = y ) | 
						
							| 121 | 120 | eqeq1d |  |-  ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( ( f ` (/) ) = y <-> y = y ) ) | 
						
							| 122 |  | fveq1 |  |-  ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( f ` 1o ) = ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) ` 1o ) ) | 
						
							| 123 | 109 | sucid |  |-  1o e. suc 1o | 
						
							| 124 |  | eqeq1 |  |-  ( b = 1o -> ( b = (/) <-> 1o = (/) ) ) | 
						
							| 125 | 124 | ifbid |  |-  ( b = 1o -> if ( b = (/) , y , x ) = if ( 1o = (/) , y , x ) ) | 
						
							| 126 |  | 1n0 |  |-  1o =/= (/) | 
						
							| 127 | 126 | neii |  |-  -. 1o = (/) | 
						
							| 128 | 127 | iffalsei |  |-  if ( 1o = (/) , y , x ) = x | 
						
							| 129 | 125 128 | eqtrdi |  |-  ( b = 1o -> if ( b = (/) , y , x ) = x ) | 
						
							| 130 | 129 104 102 | fvmpt |  |-  ( 1o e. suc 1o -> ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) ` 1o ) = x ) | 
						
							| 131 | 123 130 | ax-mp |  |-  ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) ` 1o ) = x | 
						
							| 132 | 122 131 | eqtrdi |  |-  ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( f ` 1o ) = x ) | 
						
							| 133 | 132 | eqeq1d |  |-  ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( ( f ` 1o ) = x <-> x = x ) ) | 
						
							| 134 | 121 133 | anbi12d |  |-  ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( ( ( f ` (/) ) = y /\ ( f ` 1o ) = x ) <-> ( y = y /\ x = x ) ) ) | 
						
							| 135 | 112 134 | anbi12d |  |-  ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = x ) ) <-> ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) Fn suc 1o /\ ( y = y /\ x = x ) ) ) ) | 
						
							| 136 | 111 135 | spcev |  |-  ( ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) Fn suc 1o /\ ( y = y /\ x = x ) ) -> E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = x ) ) ) | 
						
							| 137 | 105 108 136 | mp2an |  |-  E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = x ) ) | 
						
							| 138 | 100 137 | vtoclg |  |-  ( X e. A -> E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) ) | 
						
							| 139 | 138 | adantl |  |-  ( ( R Se A /\ X e. A ) -> E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) ) | 
						
							| 140 | 139 | biantrurd |  |-  ( ( R Se A /\ X e. A ) -> ( ( y e. A /\ y R X ) <-> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ ( y e. A /\ y R X ) ) ) ) | 
						
							| 141 | 101 | elpred |  |-  ( X e. A -> ( y e. Pred ( R , A , X ) <-> ( y e. A /\ y R X ) ) ) | 
						
							| 142 | 141 | adantl |  |-  ( ( R Se A /\ X e. A ) -> ( y e. Pred ( R , A , X ) <-> ( y e. A /\ y R X ) ) ) | 
						
							| 143 |  | brres |  |-  ( X e. A -> ( y ( R |` A ) X <-> ( y e. A /\ y R X ) ) ) | 
						
							| 144 | 143 | adantl |  |-  ( ( R Se A /\ X e. A ) -> ( y ( R |` A ) X <-> ( y e. A /\ y R X ) ) ) | 
						
							| 145 | 144 | anbi2d |  |-  ( ( R Se A /\ X e. A ) -> ( ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) <-> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ ( y e. A /\ y R X ) ) ) ) | 
						
							| 146 | 140 142 145 | 3bitr4rd |  |-  ( ( R Se A /\ X e. A ) -> ( ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) <-> y e. Pred ( R , A , X ) ) ) | 
						
							| 147 |  | df-3an |  |-  ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) ) | 
						
							| 148 |  | breq12 |  |-  ( ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) -> ( ( f ` (/) ) ( R |` A ) ( f ` 1o ) <-> y ( R |` A ) X ) ) | 
						
							| 149 | 148 | adantl |  |-  ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) -> ( ( f ` (/) ) ( R |` A ) ( f ` 1o ) <-> y ( R |` A ) X ) ) | 
						
							| 150 | 149 | pm5.32i |  |-  ( ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) ) | 
						
							| 151 | 147 150 | bitri |  |-  ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) ) | 
						
							| 152 | 151 | exbii |  |-  ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> E. f ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) ) | 
						
							| 153 |  | 19.41v |  |-  ( E. f ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) <-> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) ) | 
						
							| 154 | 152 153 | bitri |  |-  ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) ) | 
						
							| 155 | 154 | a1i |  |-  ( ( R Se A /\ X e. A ) -> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) ) ) | 
						
							| 156 | 1 | fveq1i |  |-  ( F ` (/) ) = ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) | 
						
							| 157 |  | setlikespec |  |-  ( ( X e. A /\ R Se A ) -> Pred ( R , A , X ) e. _V ) | 
						
							| 158 | 157 | ancoms |  |-  ( ( R Se A /\ X e. A ) -> Pred ( R , A , X ) e. _V ) | 
						
							| 159 |  | rdg0g |  |-  ( Pred ( R , A , X ) e. _V -> ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) = Pred ( R , A , X ) ) | 
						
							| 160 | 158 159 | syl |  |-  ( ( R Se A /\ X e. A ) -> ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) = Pred ( R , A , X ) ) | 
						
							| 161 | 156 160 | eqtrid |  |-  ( ( R Se A /\ X e. A ) -> ( F ` (/) ) = Pred ( R , A , X ) ) | 
						
							| 162 | 161 | eleq2d |  |-  ( ( R Se A /\ X e. A ) -> ( y e. ( F ` (/) ) <-> y e. Pred ( R , A , X ) ) ) | 
						
							| 163 | 146 155 162 | 3bitr4d |  |-  ( ( R Se A /\ X e. A ) -> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> y e. ( F ` (/) ) ) ) | 
						
							| 164 | 163 | alrimiv |  |-  ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> y e. ( F ` (/) ) ) ) | 
						
							| 165 |  | eliun |  |-  ( y e. U_ z e. ( F ` n ) Pred ( R , A , z ) <-> E. z e. ( F ` n ) y e. Pred ( R , A , z ) ) | 
						
							| 166 |  | df-rex |  |-  ( E. z e. ( F ` n ) y e. Pred ( R , A , z ) <-> E. z ( z e. ( F ` n ) /\ y e. Pred ( R , A , z ) ) ) | 
						
							| 167 | 165 166 | bitri |  |-  ( y e. U_ z e. ( F ` n ) Pred ( R , A , z ) <-> E. z ( z e. ( F ` n ) /\ y e. Pred ( R , A , z ) ) ) | 
						
							| 168 | 101 | elpred |  |-  ( z e. _V -> ( y e. Pred ( R , A , z ) <-> ( y e. A /\ y R z ) ) ) | 
						
							| 169 | 168 | elv |  |-  ( y e. Pred ( R , A , z ) <-> ( y e. A /\ y R z ) ) | 
						
							| 170 | 169 | anbi2i |  |-  ( ( z e. ( F ` n ) /\ y e. Pred ( R , A , z ) ) <-> ( z e. ( F ` n ) /\ ( y e. A /\ y R z ) ) ) | 
						
							| 171 |  | anbi1 |  |-  ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) -> ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) <-> ( z e. ( F ` n ) /\ ( y e. A /\ y R z ) ) ) ) | 
						
							| 172 | 170 171 | bitr4id |  |-  ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) -> ( ( z e. ( F ` n ) /\ y e. Pred ( R , A , z ) ) <-> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) | 
						
							| 173 | 172 | alexbii |  |-  ( A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) -> ( E. z ( z e. ( F ` n ) /\ y e. Pred ( R , A , z ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) | 
						
							| 174 | 173 | 3ad2ant3 |  |-  ( ( n e. _om /\ ( R Se A /\ X e. A ) /\ A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> ( E. z ( z e. ( F ` n ) /\ y e. Pred ( R , A , z ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) | 
						
							| 175 | 167 174 | bitrid |  |-  ( ( n e. _om /\ ( R Se A /\ X e. A ) /\ A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> ( y e. U_ z e. ( F ` n ) Pred ( R , A , z ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) | 
						
							| 176 |  | nnon |  |-  ( n e. _om -> n e. On ) | 
						
							| 177 |  | fvex |  |-  ( F ` n ) e. _V | 
						
							| 178 | 1 | ttrclselem1 |  |-  ( n e. _om -> ( F ` n ) C_ A ) | 
						
							| 179 | 178 | adantr |  |-  ( ( n e. _om /\ R Se A ) -> ( F ` n ) C_ A ) | 
						
							| 180 |  | dfse3 |  |-  ( R Se A <-> A. z e. A Pred ( R , A , z ) e. _V ) | 
						
							| 181 | 180 | biimpi |  |-  ( R Se A -> A. z e. A Pred ( R , A , z ) e. _V ) | 
						
							| 182 | 181 | adantl |  |-  ( ( n e. _om /\ R Se A ) -> A. z e. A Pred ( R , A , z ) e. _V ) | 
						
							| 183 |  | ssralv |  |-  ( ( F ` n ) C_ A -> ( A. z e. A Pred ( R , A , z ) e. _V -> A. z e. ( F ` n ) Pred ( R , A , z ) e. _V ) ) | 
						
							| 184 | 179 182 183 | sylc |  |-  ( ( n e. _om /\ R Se A ) -> A. z e. ( F ` n ) Pred ( R , A , z ) e. _V ) | 
						
							| 185 | 184 | adantrr |  |-  ( ( n e. _om /\ ( R Se A /\ X e. A ) ) -> A. z e. ( F ` n ) Pred ( R , A , z ) e. _V ) | 
						
							| 186 |  | iunexg |  |-  ( ( ( F ` n ) e. _V /\ A. z e. ( F ` n ) Pred ( R , A , z ) e. _V ) -> U_ z e. ( F ` n ) Pred ( R , A , z ) e. _V ) | 
						
							| 187 | 177 185 186 | sylancr |  |-  ( ( n e. _om /\ ( R Se A /\ X e. A ) ) -> U_ z e. ( F ` n ) Pred ( R , A , z ) e. _V ) | 
						
							| 188 |  | nfcv |  |-  F/_ b Pred ( R , A , X ) | 
						
							| 189 |  | nfcv |  |-  F/_ b n | 
						
							| 190 |  | nfmpt1 |  |-  F/_ b ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) | 
						
							| 191 | 190 188 | nfrdg |  |-  F/_ b rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) | 
						
							| 192 | 1 191 | nfcxfr |  |-  F/_ b F | 
						
							| 193 | 192 189 | nffv |  |-  F/_ b ( F ` n ) | 
						
							| 194 |  | nfcv |  |-  F/_ b Pred ( R , A , z ) | 
						
							| 195 | 193 194 | nfiun |  |-  F/_ b U_ z e. ( F ` n ) Pred ( R , A , z ) | 
						
							| 196 |  | predeq3 |  |-  ( w = z -> Pred ( R , A , w ) = Pred ( R , A , z ) ) | 
						
							| 197 | 196 | cbviunv |  |-  U_ w e. b Pred ( R , A , w ) = U_ z e. b Pred ( R , A , z ) | 
						
							| 198 |  | iuneq1 |  |-  ( b = ( F ` n ) -> U_ z e. b Pred ( R , A , z ) = U_ z e. ( F ` n ) Pred ( R , A , z ) ) | 
						
							| 199 | 197 198 | eqtrid |  |-  ( b = ( F ` n ) -> U_ w e. b Pred ( R , A , w ) = U_ z e. ( F ` n ) Pred ( R , A , z ) ) | 
						
							| 200 | 188 189 195 1 199 | rdgsucmptf |  |-  ( ( n e. On /\ U_ z e. ( F ` n ) Pred ( R , A , z ) e. _V ) -> ( F ` suc n ) = U_ z e. ( F ` n ) Pred ( R , A , z ) ) | 
						
							| 201 | 176 187 200 | syl2an2r |  |-  ( ( n e. _om /\ ( R Se A /\ X e. A ) ) -> ( F ` suc n ) = U_ z e. ( F ` n ) Pred ( R , A , z ) ) | 
						
							| 202 | 201 | 3adant3 |  |-  ( ( n e. _om /\ ( R Se A /\ X e. A ) /\ A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> ( F ` suc n ) = U_ z e. ( F ` n ) Pred ( R , A , z ) ) | 
						
							| 203 | 202 | eleq2d |  |-  ( ( n e. _om /\ ( R Se A /\ X e. A ) /\ A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> ( y e. ( F ` suc n ) <-> y e. U_ z e. ( F ` n ) Pred ( R , A , z ) ) ) | 
						
							| 204 |  | eqeq2 |  |-  ( x = X -> ( ( f ` suc suc n ) = x <-> ( f ` suc suc n ) = X ) ) | 
						
							| 205 | 204 | anbi2d |  |-  ( x = X -> ( ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) <-> ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) ) ) | 
						
							| 206 | 205 | 3anbi2d |  |-  ( x = X -> ( ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) | 
						
							| 207 | 206 | exbidv |  |-  ( x = X -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) | 
						
							| 208 |  | eqeq2 |  |-  ( x = X -> ( ( g ` suc n ) = x <-> ( g ` suc n ) = X ) ) | 
						
							| 209 | 208 | anbi2d |  |-  ( x = X -> ( ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) <-> ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) ) ) | 
						
							| 210 | 209 | 3anbi2d |  |-  ( x = X -> ( ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) | 
						
							| 211 | 210 | exbidv |  |-  ( x = X -> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) | 
						
							| 212 | 211 | anbi1d |  |-  ( x = X -> ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) <-> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) | 
						
							| 213 | 212 | exbidv |  |-  ( x = X -> ( E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) | 
						
							| 214 | 207 213 | bibi12d |  |-  ( x = X -> ( ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) <-> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) ) | 
						
							| 215 | 214 | imbi2d |  |-  ( x = X -> ( ( n e. _om -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) <-> ( n e. _om -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) ) ) | 
						
							| 216 |  | fvex |  |-  ( f ` suc b ) e. _V | 
						
							| 217 |  | eqid |  |-  ( b e. suc suc n |-> ( f ` suc b ) ) = ( b e. suc suc n |-> ( f ` suc b ) ) | 
						
							| 218 | 216 217 | fnmpti |  |-  ( b e. suc suc n |-> ( f ` suc b ) ) Fn suc suc n | 
						
							| 219 | 218 | a1i |  |-  ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( b e. suc suc n |-> ( f ` suc b ) ) Fn suc suc n ) | 
						
							| 220 |  | peano2 |  |-  ( n e. _om -> suc n e. _om ) | 
						
							| 221 | 220 | adantr |  |-  ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> suc n e. _om ) | 
						
							| 222 |  | nnord |  |-  ( suc n e. _om -> Ord suc n ) | 
						
							| 223 | 221 222 | syl |  |-  ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> Ord suc n ) | 
						
							| 224 |  | 0elsuc |  |-  ( Ord suc n -> (/) e. suc suc n ) | 
						
							| 225 | 223 224 | syl |  |-  ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> (/) e. suc suc n ) | 
						
							| 226 |  | suceq |  |-  ( b = (/) -> suc b = suc (/) ) | 
						
							| 227 | 226 | fveq2d |  |-  ( b = (/) -> ( f ` suc b ) = ( f ` suc (/) ) ) | 
						
							| 228 |  | fvex |  |-  ( f ` suc (/) ) e. _V | 
						
							| 229 | 227 217 228 | fvmpt |  |-  ( (/) e. suc suc n -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` (/) ) = ( f ` suc (/) ) ) | 
						
							| 230 | 225 229 | syl |  |-  ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` (/) ) = ( f ` suc (/) ) ) | 
						
							| 231 |  | vex |  |-  n e. _V | 
						
							| 232 | 231 | sucex |  |-  suc n e. _V | 
						
							| 233 | 232 | sucid |  |-  suc n e. suc suc n | 
						
							| 234 |  | suceq |  |-  ( b = suc n -> suc b = suc suc n ) | 
						
							| 235 | 234 | fveq2d |  |-  ( b = suc n -> ( f ` suc b ) = ( f ` suc suc n ) ) | 
						
							| 236 |  | fvex |  |-  ( f ` suc suc n ) e. _V | 
						
							| 237 | 235 217 236 | fvmpt |  |-  ( suc n e. suc suc n -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) = ( f ` suc suc n ) ) | 
						
							| 238 | 233 237 | mp1i |  |-  ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) = ( f ` suc suc n ) ) | 
						
							| 239 |  | simpr2r |  |-  ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( f ` suc suc n ) = x ) | 
						
							| 240 | 238 239 | eqtrd |  |-  ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) = x ) | 
						
							| 241 |  | fveq2 |  |-  ( a = suc c -> ( f ` a ) = ( f ` suc c ) ) | 
						
							| 242 |  | suceq |  |-  ( a = suc c -> suc a = suc suc c ) | 
						
							| 243 | 242 | fveq2d |  |-  ( a = suc c -> ( f ` suc a ) = ( f ` suc suc c ) ) | 
						
							| 244 | 241 243 | breq12d |  |-  ( a = suc c -> ( ( f ` a ) ( R |` A ) ( f ` suc a ) <-> ( f ` suc c ) ( R |` A ) ( f ` suc suc c ) ) ) | 
						
							| 245 |  | simplr3 |  |-  ( ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) /\ c e. suc n ) -> A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) | 
						
							| 246 |  | ordsucelsuc |  |-  ( Ord suc n -> ( c e. suc n <-> suc c e. suc suc n ) ) | 
						
							| 247 | 223 246 | syl |  |-  ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( c e. suc n <-> suc c e. suc suc n ) ) | 
						
							| 248 | 247 | biimpa |  |-  ( ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) /\ c e. suc n ) -> suc c e. suc suc n ) | 
						
							| 249 | 244 245 248 | rspcdva |  |-  ( ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) /\ c e. suc n ) -> ( f ` suc c ) ( R |` A ) ( f ` suc suc c ) ) | 
						
							| 250 |  | elelsuc |  |-  ( c e. suc n -> c e. suc suc n ) | 
						
							| 251 |  | suceq |  |-  ( b = c -> suc b = suc c ) | 
						
							| 252 | 251 | fveq2d |  |-  ( b = c -> ( f ` suc b ) = ( f ` suc c ) ) | 
						
							| 253 |  | fvex |  |-  ( f ` suc c ) e. _V | 
						
							| 254 | 252 217 253 | fvmpt |  |-  ( c e. suc suc n -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) = ( f ` suc c ) ) | 
						
							| 255 | 250 254 | syl |  |-  ( c e. suc n -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) = ( f ` suc c ) ) | 
						
							| 256 | 255 | adantl |  |-  ( ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) /\ c e. suc n ) -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) = ( f ` suc c ) ) | 
						
							| 257 |  | suceq |  |-  ( b = suc c -> suc b = suc suc c ) | 
						
							| 258 | 257 | fveq2d |  |-  ( b = suc c -> ( f ` suc b ) = ( f ` suc suc c ) ) | 
						
							| 259 |  | fvex |  |-  ( f ` suc suc c ) e. _V | 
						
							| 260 | 258 217 259 | fvmpt |  |-  ( suc c e. suc suc n -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) = ( f ` suc suc c ) ) | 
						
							| 261 | 248 260 | syl |  |-  ( ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) /\ c e. suc n ) -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) = ( f ` suc suc c ) ) | 
						
							| 262 | 249 256 261 | 3brtr4d |  |-  ( ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) /\ c e. suc n ) -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) ( R |` A ) ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) ) | 
						
							| 263 | 262 | ralrimiva |  |-  ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> A. c e. suc n ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) ( R |` A ) ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) ) | 
						
							| 264 | 232 | sucex |  |-  suc suc n e. _V | 
						
							| 265 | 264 | mptex |  |-  ( b e. suc suc n |-> ( f ` suc b ) ) e. _V | 
						
							| 266 |  | fneq1 |  |-  ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( g Fn suc suc n <-> ( b e. suc suc n |-> ( f ` suc b ) ) Fn suc suc n ) ) | 
						
							| 267 |  | fveq1 |  |-  ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( g ` (/) ) = ( ( b e. suc suc n |-> ( f ` suc b ) ) ` (/) ) ) | 
						
							| 268 | 267 | eqeq1d |  |-  ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( ( g ` (/) ) = ( f ` suc (/) ) <-> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` (/) ) = ( f ` suc (/) ) ) ) | 
						
							| 269 |  | fveq1 |  |-  ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( g ` suc n ) = ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) ) | 
						
							| 270 | 269 | eqeq1d |  |-  ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( ( g ` suc n ) = x <-> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) = x ) ) | 
						
							| 271 | 268 270 | anbi12d |  |-  ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) <-> ( ( ( b e. suc suc n |-> ( f ` suc b ) ) ` (/) ) = ( f ` suc (/) ) /\ ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) = x ) ) ) | 
						
							| 272 |  | fveq1 |  |-  ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( g ` c ) = ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) ) | 
						
							| 273 |  | fveq1 |  |-  ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( g ` suc c ) = ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) ) | 
						
							| 274 | 272 273 | breq12d |  |-  ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( ( g ` c ) ( R |` A ) ( g ` suc c ) <-> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) ( R |` A ) ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) ) ) | 
						
							| 275 | 274 | ralbidv |  |-  ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) <-> A. c e. suc n ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) ( R |` A ) ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) ) ) | 
						
							| 276 | 266 271 275 | 3anbi123d |  |-  ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( ( g Fn suc suc n /\ ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> ( ( b e. suc suc n |-> ( f ` suc b ) ) Fn suc suc n /\ ( ( ( b e. suc suc n |-> ( f ` suc b ) ) ` (/) ) = ( f ` suc (/) ) /\ ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) = x ) /\ A. c e. suc n ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) ( R |` A ) ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) ) ) ) | 
						
							| 277 | 265 276 | spcev |  |-  ( ( ( b e. suc suc n |-> ( f ` suc b ) ) Fn suc suc n /\ ( ( ( b e. suc suc n |-> ( f ` suc b ) ) ` (/) ) = ( f ` suc (/) ) /\ ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) = x ) /\ A. c e. suc n ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) ( R |` A ) ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) ) -> E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) | 
						
							| 278 | 219 230 240 263 277 | syl121anc |  |-  ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) | 
						
							| 279 |  | simpr2l |  |-  ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( f ` (/) ) = y ) | 
						
							| 280 | 15 | fveq2d |  |-  ( a = (/) -> ( f ` suc a ) = ( f ` suc (/) ) ) | 
						
							| 281 | 14 280 | breq12d |  |-  ( a = (/) -> ( ( f ` a ) ( R |` A ) ( f ` suc a ) <-> ( f ` (/) ) ( R |` A ) ( f ` suc (/) ) ) ) | 
						
							| 282 |  | simpr3 |  |-  ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) | 
						
							| 283 | 281 282 225 | rspcdva |  |-  ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( f ` (/) ) ( R |` A ) ( f ` suc (/) ) ) | 
						
							| 284 | 279 283 | eqbrtrrd |  |-  ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> y ( R |` A ) ( f ` suc (/) ) ) | 
						
							| 285 |  | eqeq2 |  |-  ( z = ( f ` suc (/) ) -> ( ( g ` (/) ) = z <-> ( g ` (/) ) = ( f ` suc (/) ) ) ) | 
						
							| 286 | 285 | anbi1d |  |-  ( z = ( f ` suc (/) ) -> ( ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) <-> ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) ) ) | 
						
							| 287 | 286 | 3anbi2d |  |-  ( z = ( f ` suc (/) ) -> ( ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> ( g Fn suc suc n /\ ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) | 
						
							| 288 | 287 | exbidv |  |-  ( z = ( f ` suc (/) ) -> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) | 
						
							| 289 |  | breq2 |  |-  ( z = ( f ` suc (/) ) -> ( y ( R |` A ) z <-> y ( R |` A ) ( f ` suc (/) ) ) ) | 
						
							| 290 | 288 289 | anbi12d |  |-  ( z = ( f ` suc (/) ) -> ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) <-> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) ( f ` suc (/) ) ) ) ) | 
						
							| 291 | 228 290 | spcev |  |-  ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) ( f ` suc (/) ) ) -> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) ) | 
						
							| 292 | 278 284 291 | syl2anc |  |-  ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) ) | 
						
							| 293 | 292 | ex |  |-  ( n e. _om -> ( ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) -> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) ) ) | 
						
							| 294 | 293 | exlimdv |  |-  ( n e. _om -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) -> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) ) ) | 
						
							| 295 |  | fvex |  |-  ( g ` U. b ) e. _V | 
						
							| 296 | 101 295 | ifex |  |-  if ( b = (/) , y , ( g ` U. b ) ) e. _V | 
						
							| 297 |  | eqid |  |-  ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) | 
						
							| 298 | 296 297 | fnmpti |  |-  ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) Fn suc suc suc n | 
						
							| 299 | 298 | a1i |  |-  ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) Fn suc suc suc n ) | 
						
							| 300 |  | peano2 |  |-  ( suc n e. _om -> suc suc n e. _om ) | 
						
							| 301 | 220 300 | syl |  |-  ( n e. _om -> suc suc n e. _om ) | 
						
							| 302 | 301 | 3ad2ant1 |  |-  ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> suc suc n e. _om ) | 
						
							| 303 |  | nnord |  |-  ( suc suc n e. _om -> Ord suc suc n ) | 
						
							| 304 | 302 303 | syl |  |-  ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> Ord suc suc n ) | 
						
							| 305 |  | 0elsuc |  |-  ( Ord suc suc n -> (/) e. suc suc suc n ) | 
						
							| 306 | 304 305 | syl |  |-  ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> (/) e. suc suc suc n ) | 
						
							| 307 |  | iftrue |  |-  ( b = (/) -> if ( b = (/) , y , ( g ` U. b ) ) = y ) | 
						
							| 308 | 307 297 101 | fvmpt |  |-  ( (/) e. suc suc suc n -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` (/) ) = y ) | 
						
							| 309 | 306 308 | syl |  |-  ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` (/) ) = y ) | 
						
							| 310 | 264 | sucid |  |-  suc suc n e. suc suc suc n | 
						
							| 311 |  | eqeq1 |  |-  ( b = suc suc n -> ( b = (/) <-> suc suc n = (/) ) ) | 
						
							| 312 |  | unieq |  |-  ( b = suc suc n -> U. b = U. suc suc n ) | 
						
							| 313 | 312 | fveq2d |  |-  ( b = suc suc n -> ( g ` U. b ) = ( g ` U. suc suc n ) ) | 
						
							| 314 | 311 313 | ifbieq2d |  |-  ( b = suc suc n -> if ( b = (/) , y , ( g ` U. b ) ) = if ( suc suc n = (/) , y , ( g ` U. suc suc n ) ) ) | 
						
							| 315 |  | nsuceq0 |  |-  suc suc n =/= (/) | 
						
							| 316 | 315 | neii |  |-  -. suc suc n = (/) | 
						
							| 317 | 316 | iffalsei |  |-  if ( suc suc n = (/) , y , ( g ` U. suc suc n ) ) = ( g ` U. suc suc n ) | 
						
							| 318 | 314 317 | eqtrdi |  |-  ( b = suc suc n -> if ( b = (/) , y , ( g ` U. b ) ) = ( g ` U. suc suc n ) ) | 
						
							| 319 |  | fvex |  |-  ( g ` U. suc suc n ) e. _V | 
						
							| 320 | 318 297 319 | fvmpt |  |-  ( suc suc n e. suc suc suc n -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) = ( g ` U. suc suc n ) ) | 
						
							| 321 | 310 320 | mp1i |  |-  ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) = ( g ` U. suc suc n ) ) | 
						
							| 322 | 220 | 3ad2ant1 |  |-  ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> suc n e. _om ) | 
						
							| 323 | 322 222 | syl |  |-  ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> Ord suc n ) | 
						
							| 324 |  | ordunisuc |  |-  ( Ord suc n -> U. suc suc n = suc n ) | 
						
							| 325 | 323 324 | syl |  |-  ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> U. suc suc n = suc n ) | 
						
							| 326 | 325 | fveq2d |  |-  ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( g ` U. suc suc n ) = ( g ` suc n ) ) | 
						
							| 327 |  | simp22r |  |-  ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( g ` suc n ) = x ) | 
						
							| 328 | 321 326 327 | 3eqtrd |  |-  ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) = x ) | 
						
							| 329 |  | simpl3 |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a = (/) ) -> y ( R |` A ) z ) | 
						
							| 330 |  | iftrue |  |-  ( a = (/) -> if ( a = (/) , y , ( g ` U. a ) ) = y ) | 
						
							| 331 | 330 | adantl |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a = (/) ) -> if ( a = (/) , y , ( g ` U. a ) ) = y ) | 
						
							| 332 |  | fveq2 |  |-  ( a = (/) -> ( g ` a ) = ( g ` (/) ) ) | 
						
							| 333 |  | simp22l |  |-  ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( g ` (/) ) = z ) | 
						
							| 334 | 332 333 | sylan9eqr |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a = (/) ) -> ( g ` a ) = z ) | 
						
							| 335 | 329 331 334 | 3brtr4d |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a = (/) ) -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) | 
						
							| 336 | 335 | ex |  |-  ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( a = (/) -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) ) | 
						
							| 337 | 336 | adantr |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( a = (/) -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) ) | 
						
							| 338 |  | ordsucelsuc |  |-  ( Ord suc n -> ( b e. suc n <-> suc b e. suc suc n ) ) | 
						
							| 339 | 323 338 | syl |  |-  ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( b e. suc n <-> suc b e. suc suc n ) ) | 
						
							| 340 |  | elnn |  |-  ( ( b e. suc n /\ suc n e. _om ) -> b e. _om ) | 
						
							| 341 | 322 340 | sylan2 |  |-  ( ( b e. suc n /\ ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) ) -> b e. _om ) | 
						
							| 342 | 341 | ancoms |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ b e. suc n ) -> b e. _om ) | 
						
							| 343 |  | nnord |  |-  ( b e. _om -> Ord b ) | 
						
							| 344 | 342 343 | syl |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ b e. suc n ) -> Ord b ) | 
						
							| 345 |  | ordunisuc |  |-  ( Ord b -> U. suc b = b ) | 
						
							| 346 | 344 345 | syl |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ b e. suc n ) -> U. suc b = b ) | 
						
							| 347 | 346 | fveq2d |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ b e. suc n ) -> ( g ` U. suc b ) = ( g ` b ) ) | 
						
							| 348 |  | simp23 |  |-  ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) | 
						
							| 349 |  | fveq2 |  |-  ( c = b -> ( g ` c ) = ( g ` b ) ) | 
						
							| 350 |  | suceq |  |-  ( c = b -> suc c = suc b ) | 
						
							| 351 | 350 | fveq2d |  |-  ( c = b -> ( g ` suc c ) = ( g ` suc b ) ) | 
						
							| 352 | 349 351 | breq12d |  |-  ( c = b -> ( ( g ` c ) ( R |` A ) ( g ` suc c ) <-> ( g ` b ) ( R |` A ) ( g ` suc b ) ) ) | 
						
							| 353 | 352 | rspcv |  |-  ( b e. suc n -> ( A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) -> ( g ` b ) ( R |` A ) ( g ` suc b ) ) ) | 
						
							| 354 | 348 353 | mpan9 |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ b e. suc n ) -> ( g ` b ) ( R |` A ) ( g ` suc b ) ) | 
						
							| 355 | 347 354 | eqbrtrd |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ b e. suc n ) -> ( g ` U. suc b ) ( R |` A ) ( g ` suc b ) ) | 
						
							| 356 | 355 | ex |  |-  ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( b e. suc n -> ( g ` U. suc b ) ( R |` A ) ( g ` suc b ) ) ) | 
						
							| 357 | 339 356 | sylbird |  |-  ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( suc b e. suc suc n -> ( g ` U. suc b ) ( R |` A ) ( g ` suc b ) ) ) | 
						
							| 358 | 357 | imp |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ suc b e. suc suc n ) -> ( g ` U. suc b ) ( R |` A ) ( g ` suc b ) ) | 
						
							| 359 |  | eleq1 |  |-  ( a = suc b -> ( a e. suc suc n <-> suc b e. suc suc n ) ) | 
						
							| 360 | 359 | anbi2d |  |-  ( a = suc b -> ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) <-> ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ suc b e. suc suc n ) ) ) | 
						
							| 361 |  | eqeq1 |  |-  ( a = suc b -> ( a = (/) <-> suc b = (/) ) ) | 
						
							| 362 |  | unieq |  |-  ( a = suc b -> U. a = U. suc b ) | 
						
							| 363 | 362 | fveq2d |  |-  ( a = suc b -> ( g ` U. a ) = ( g ` U. suc b ) ) | 
						
							| 364 | 361 363 | ifbieq2d |  |-  ( a = suc b -> if ( a = (/) , y , ( g ` U. a ) ) = if ( suc b = (/) , y , ( g ` U. suc b ) ) ) | 
						
							| 365 |  | nsuceq0 |  |-  suc b =/= (/) | 
						
							| 366 | 365 | neii |  |-  -. suc b = (/) | 
						
							| 367 | 366 | iffalsei |  |-  if ( suc b = (/) , y , ( g ` U. suc b ) ) = ( g ` U. suc b ) | 
						
							| 368 | 364 367 | eqtrdi |  |-  ( a = suc b -> if ( a = (/) , y , ( g ` U. a ) ) = ( g ` U. suc b ) ) | 
						
							| 369 |  | fveq2 |  |-  ( a = suc b -> ( g ` a ) = ( g ` suc b ) ) | 
						
							| 370 | 368 369 | breq12d |  |-  ( a = suc b -> ( if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) <-> ( g ` U. suc b ) ( R |` A ) ( g ` suc b ) ) ) | 
						
							| 371 | 360 370 | imbi12d |  |-  ( a = suc b -> ( ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) <-> ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ suc b e. suc suc n ) -> ( g ` U. suc b ) ( R |` A ) ( g ` suc b ) ) ) ) | 
						
							| 372 | 358 371 | mpbiri |  |-  ( a = suc b -> ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) ) | 
						
							| 373 | 372 | com12 |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( a = suc b -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) ) | 
						
							| 374 | 373 | rexlimdvw |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( E. b e. _om a = suc b -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) ) | 
						
							| 375 |  | elnn |  |-  ( ( a e. suc suc n /\ suc suc n e. _om ) -> a e. _om ) | 
						
							| 376 | 375 | ancoms |  |-  ( ( suc suc n e. _om /\ a e. suc suc n ) -> a e. _om ) | 
						
							| 377 | 302 376 | sylan |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> a e. _om ) | 
						
							| 378 |  | nn0suc |  |-  ( a e. _om -> ( a = (/) \/ E. b e. _om a = suc b ) ) | 
						
							| 379 | 377 378 | syl |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( a = (/) \/ E. b e. _om a = suc b ) ) | 
						
							| 380 | 337 374 379 | mpjaod |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) | 
						
							| 381 |  | elelsuc |  |-  ( a e. suc suc n -> a e. suc suc suc n ) | 
						
							| 382 |  | eqeq1 |  |-  ( b = a -> ( b = (/) <-> a = (/) ) ) | 
						
							| 383 |  | unieq |  |-  ( b = a -> U. b = U. a ) | 
						
							| 384 | 383 | fveq2d |  |-  ( b = a -> ( g ` U. b ) = ( g ` U. a ) ) | 
						
							| 385 | 382 384 | ifbieq2d |  |-  ( b = a -> if ( b = (/) , y , ( g ` U. b ) ) = if ( a = (/) , y , ( g ` U. a ) ) ) | 
						
							| 386 |  | fvex |  |-  ( g ` U. a ) e. _V | 
						
							| 387 | 101 386 | ifex |  |-  if ( a = (/) , y , ( g ` U. a ) ) e. _V | 
						
							| 388 | 385 297 387 | fvmpt |  |-  ( a e. suc suc suc n -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) = if ( a = (/) , y , ( g ` U. a ) ) ) | 
						
							| 389 | 381 388 | syl |  |-  ( a e. suc suc n -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) = if ( a = (/) , y , ( g ` U. a ) ) ) | 
						
							| 390 | 389 | adantl |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) = if ( a = (/) , y , ( g ` U. a ) ) ) | 
						
							| 391 |  | ordsucelsuc |  |-  ( Ord suc suc n -> ( a e. suc suc n <-> suc a e. suc suc suc n ) ) | 
						
							| 392 | 304 391 | syl |  |-  ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( a e. suc suc n <-> suc a e. suc suc suc n ) ) | 
						
							| 393 | 392 | biimpa |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> suc a e. suc suc suc n ) | 
						
							| 394 |  | eqeq1 |  |-  ( b = suc a -> ( b = (/) <-> suc a = (/) ) ) | 
						
							| 395 |  | unieq |  |-  ( b = suc a -> U. b = U. suc a ) | 
						
							| 396 | 395 | fveq2d |  |-  ( b = suc a -> ( g ` U. b ) = ( g ` U. suc a ) ) | 
						
							| 397 | 394 396 | ifbieq2d |  |-  ( b = suc a -> if ( b = (/) , y , ( g ` U. b ) ) = if ( suc a = (/) , y , ( g ` U. suc a ) ) ) | 
						
							| 398 |  | nsuceq0 |  |-  suc a =/= (/) | 
						
							| 399 | 398 | neii |  |-  -. suc a = (/) | 
						
							| 400 | 399 | iffalsei |  |-  if ( suc a = (/) , y , ( g ` U. suc a ) ) = ( g ` U. suc a ) | 
						
							| 401 | 397 400 | eqtrdi |  |-  ( b = suc a -> if ( b = (/) , y , ( g ` U. b ) ) = ( g ` U. suc a ) ) | 
						
							| 402 |  | fvex |  |-  ( g ` U. suc a ) e. _V | 
						
							| 403 | 401 297 402 | fvmpt |  |-  ( suc a e. suc suc suc n -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) = ( g ` U. suc a ) ) | 
						
							| 404 | 393 403 | syl |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) = ( g ` U. suc a ) ) | 
						
							| 405 |  | nnord |  |-  ( a e. _om -> Ord a ) | 
						
							| 406 | 377 405 | syl |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> Ord a ) | 
						
							| 407 |  | ordunisuc |  |-  ( Ord a -> U. suc a = a ) | 
						
							| 408 | 406 407 | syl |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> U. suc a = a ) | 
						
							| 409 | 408 | fveq2d |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( g ` U. suc a ) = ( g ` a ) ) | 
						
							| 410 | 404 409 | eqtrd |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) = ( g ` a ) ) | 
						
							| 411 | 380 390 410 | 3brtr4d |  |-  ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) ( R |` A ) ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) ) | 
						
							| 412 | 411 | ralrimiva |  |-  ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> A. a e. suc suc n ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) ( R |` A ) ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) ) | 
						
							| 413 | 264 | sucex |  |-  suc suc suc n e. _V | 
						
							| 414 | 413 | mptex |  |-  ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) e. _V | 
						
							| 415 |  | fneq1 |  |-  ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( f Fn suc suc suc n <-> ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) Fn suc suc suc n ) ) | 
						
							| 416 |  | fveq1 |  |-  ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( f ` (/) ) = ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` (/) ) ) | 
						
							| 417 | 416 | eqeq1d |  |-  ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( ( f ` (/) ) = y <-> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` (/) ) = y ) ) | 
						
							| 418 |  | fveq1 |  |-  ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( f ` suc suc n ) = ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) ) | 
						
							| 419 | 418 | eqeq1d |  |-  ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( ( f ` suc suc n ) = x <-> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) = x ) ) | 
						
							| 420 | 417 419 | anbi12d |  |-  ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) <-> ( ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` (/) ) = y /\ ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) = x ) ) ) | 
						
							| 421 |  | fveq1 |  |-  ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( f ` a ) = ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) ) | 
						
							| 422 |  | fveq1 |  |-  ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( f ` suc a ) = ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) ) | 
						
							| 423 | 421 422 | breq12d |  |-  ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( ( f ` a ) ( R |` A ) ( f ` suc a ) <-> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) ( R |` A ) ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) ) ) | 
						
							| 424 | 423 | ralbidv |  |-  ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) <-> A. a e. suc suc n ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) ( R |` A ) ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) ) ) | 
						
							| 425 | 415 420 424 | 3anbi123d |  |-  ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) Fn suc suc suc n /\ ( ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` (/) ) = y /\ ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) = x ) /\ A. a e. suc suc n ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) ( R |` A ) ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) ) ) ) | 
						
							| 426 | 414 425 | spcev |  |-  ( ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) Fn suc suc suc n /\ ( ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` (/) ) = y /\ ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) = x ) /\ A. a e. suc suc n ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) ( R |` A ) ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) ) -> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) | 
						
							| 427 | 299 309 328 412 426 | syl121anc |  |-  ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) | 
						
							| 428 | 427 | 3exp |  |-  ( n e. _om -> ( ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) -> ( y ( R |` A ) z -> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) ) | 
						
							| 429 | 428 | exlimdv |  |-  ( n e. _om -> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) -> ( y ( R |` A ) z -> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) ) | 
						
							| 430 | 429 | impd |  |-  ( n e. _om -> ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) | 
						
							| 431 | 430 | exlimdv |  |-  ( n e. _om -> ( E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) | 
						
							| 432 | 294 431 | impbid |  |-  ( n e. _om -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) ) ) | 
						
							| 433 |  | vex |  |-  z e. _V | 
						
							| 434 | 433 | brresi |  |-  ( y ( R |` A ) z <-> ( y e. A /\ y R z ) ) | 
						
							| 435 | 434 | anbi2i |  |-  ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) <-> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) | 
						
							| 436 | 435 | exbii |  |-  ( E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) | 
						
							| 437 | 432 436 | bitrdi |  |-  ( n e. _om -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) | 
						
							| 438 | 215 437 | vtoclg |  |-  ( X e. A -> ( n e. _om -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) ) | 
						
							| 439 | 438 | impcom |  |-  ( ( n e. _om /\ X e. A ) -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) | 
						
							| 440 | 439 | adantrl |  |-  ( ( n e. _om /\ ( R Se A /\ X e. A ) ) -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) | 
						
							| 441 | 440 | 3adant3 |  |-  ( ( n e. _om /\ ( R Se A /\ X e. A ) /\ A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) | 
						
							| 442 | 175 203 441 | 3bitr4rd |  |-  ( ( n e. _om /\ ( R Se A /\ X e. A ) /\ A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` suc n ) ) ) | 
						
							| 443 | 442 | alrimiv |  |-  ( ( n e. _om /\ ( R Se A /\ X e. A ) /\ A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> A. y ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` suc n ) ) ) | 
						
							| 444 | 443 | 3exp |  |-  ( n e. _om -> ( ( R Se A /\ X e. A ) -> ( A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) -> A. y ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` suc n ) ) ) ) ) | 
						
							| 445 | 444 | a2d |  |-  ( n e. _om -> ( ( ( R Se A /\ X e. A ) -> A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` suc n ) ) ) ) ) | 
						
							| 446 | 27 68 82 96 164 445 | finds |  |-  ( N e. _om -> ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` N ) ) ) ) | 
						
							| 447 | 446 | 3impib |  |-  ( ( N e. _om /\ R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` N ) ) ) | 
						
							| 448 | 447 | 19.21bi |  |-  ( ( N e. _om /\ R Se A /\ X e. A ) -> ( E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` N ) ) ) |