| Step |
Hyp |
Ref |
Expression |
| 1 |
|
suceq |
|- ( m = (/) -> suc m = suc (/) ) |
| 2 |
|
suceq |
|- ( suc m = suc (/) -> suc suc m = suc suc (/) ) |
| 3 |
1 2
|
syl |
|- ( m = (/) -> suc suc m = suc suc (/) ) |
| 4 |
3
|
fneq2d |
|- ( m = (/) -> ( f Fn suc suc m <-> f Fn suc suc (/) ) ) |
| 5 |
|
df-1o |
|- 1o = suc (/) |
| 6 |
1 5
|
eqtr4di |
|- ( m = (/) -> suc m = 1o ) |
| 7 |
6
|
fveqeq2d |
|- ( m = (/) -> ( ( f ` suc m ) = y <-> ( f ` 1o ) = y ) ) |
| 8 |
7
|
anbi2d |
|- ( m = (/) -> ( ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) <-> ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) ) ) |
| 9 |
|
df1o2 |
|- 1o = { (/) } |
| 10 |
6 9
|
eqtrdi |
|- ( m = (/) -> suc m = { (/) } ) |
| 11 |
10
|
raleqdv |
|- ( m = (/) -> ( A. a e. suc m ( f ` a ) R ( f ` suc a ) <-> A. a e. { (/) } ( f ` a ) R ( f ` suc a ) ) ) |
| 12 |
|
0ex |
|- (/) e. _V |
| 13 |
|
fveq2 |
|- ( a = (/) -> ( f ` a ) = ( f ` (/) ) ) |
| 14 |
|
suceq |
|- ( a = (/) -> suc a = suc (/) ) |
| 15 |
14 5
|
eqtr4di |
|- ( a = (/) -> suc a = 1o ) |
| 16 |
15
|
fveq2d |
|- ( a = (/) -> ( f ` suc a ) = ( f ` 1o ) ) |
| 17 |
13 16
|
breq12d |
|- ( a = (/) -> ( ( f ` a ) R ( f ` suc a ) <-> ( f ` (/) ) R ( f ` 1o ) ) ) |
| 18 |
12 17
|
ralsn |
|- ( A. a e. { (/) } ( f ` a ) R ( f ` suc a ) <-> ( f ` (/) ) R ( f ` 1o ) ) |
| 19 |
11 18
|
bitrdi |
|- ( m = (/) -> ( A. a e. suc m ( f ` a ) R ( f ` suc a ) <-> ( f ` (/) ) R ( f ` 1o ) ) ) |
| 20 |
4 8 19
|
3anbi123d |
|- ( m = (/) -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) ) ) |
| 21 |
20
|
exbidv |
|- ( m = (/) -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> E. f ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) ) ) |
| 22 |
21
|
imbi1d |
|- ( m = (/) -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( E. f ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x S y ) ) ) |
| 23 |
22
|
albidv |
|- ( m = (/) -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( E. f ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x S y ) ) ) |
| 24 |
23
|
imbi2d |
|- ( m = (/) -> ( ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) <-> ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x S y ) ) ) ) |
| 25 |
|
suceq |
|- ( m = i -> suc m = suc i ) |
| 26 |
|
suceq |
|- ( suc m = suc i -> suc suc m = suc suc i ) |
| 27 |
25 26
|
syl |
|- ( m = i -> suc suc m = suc suc i ) |
| 28 |
27
|
fneq2d |
|- ( m = i -> ( f Fn suc suc m <-> f Fn suc suc i ) ) |
| 29 |
25
|
fveqeq2d |
|- ( m = i -> ( ( f ` suc m ) = y <-> ( f ` suc i ) = y ) ) |
| 30 |
29
|
anbi2d |
|- ( m = i -> ( ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) <-> ( ( f ` (/) ) = x /\ ( f ` suc i ) = y ) ) ) |
| 31 |
25
|
raleqdv |
|- ( m = i -> ( A. a e. suc m ( f ` a ) R ( f ` suc a ) <-> A. a e. suc i ( f ` a ) R ( f ` suc a ) ) ) |
| 32 |
|
fveq2 |
|- ( a = b -> ( f ` a ) = ( f ` b ) ) |
| 33 |
|
suceq |
|- ( a = b -> suc a = suc b ) |
| 34 |
33
|
fveq2d |
|- ( a = b -> ( f ` suc a ) = ( f ` suc b ) ) |
| 35 |
32 34
|
breq12d |
|- ( a = b -> ( ( f ` a ) R ( f ` suc a ) <-> ( f ` b ) R ( f ` suc b ) ) ) |
| 36 |
35
|
cbvralvw |
|- ( A. a e. suc i ( f ` a ) R ( f ` suc a ) <-> A. b e. suc i ( f ` b ) R ( f ` suc b ) ) |
| 37 |
31 36
|
bitrdi |
|- ( m = i -> ( A. a e. suc m ( f ` a ) R ( f ` suc a ) <-> A. b e. suc i ( f ` b ) R ( f ` suc b ) ) ) |
| 38 |
28 30 37
|
3anbi123d |
|- ( m = i -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> ( f Fn suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc i ) = y ) /\ A. b e. suc i ( f ` b ) R ( f ` suc b ) ) ) ) |
| 39 |
38
|
exbidv |
|- ( m = i -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> E. f ( f Fn suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc i ) = y ) /\ A. b e. suc i ( f ` b ) R ( f ` suc b ) ) ) ) |
| 40 |
|
fneq1 |
|- ( f = g -> ( f Fn suc suc i <-> g Fn suc suc i ) ) |
| 41 |
|
fveq1 |
|- ( f = g -> ( f ` (/) ) = ( g ` (/) ) ) |
| 42 |
41
|
eqeq1d |
|- ( f = g -> ( ( f ` (/) ) = x <-> ( g ` (/) ) = x ) ) |
| 43 |
|
fveq1 |
|- ( f = g -> ( f ` suc i ) = ( g ` suc i ) ) |
| 44 |
43
|
eqeq1d |
|- ( f = g -> ( ( f ` suc i ) = y <-> ( g ` suc i ) = y ) ) |
| 45 |
42 44
|
anbi12d |
|- ( f = g -> ( ( ( f ` (/) ) = x /\ ( f ` suc i ) = y ) <-> ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) ) ) |
| 46 |
|
fveq1 |
|- ( f = g -> ( f ` b ) = ( g ` b ) ) |
| 47 |
|
fveq1 |
|- ( f = g -> ( f ` suc b ) = ( g ` suc b ) ) |
| 48 |
46 47
|
breq12d |
|- ( f = g -> ( ( f ` b ) R ( f ` suc b ) <-> ( g ` b ) R ( g ` suc b ) ) ) |
| 49 |
48
|
ralbidv |
|- ( f = g -> ( A. b e. suc i ( f ` b ) R ( f ` suc b ) <-> A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) |
| 50 |
40 45 49
|
3anbi123d |
|- ( f = g -> ( ( f Fn suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc i ) = y ) /\ A. b e. suc i ( f ` b ) R ( f ` suc b ) ) <-> ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) ) |
| 51 |
50
|
cbvexvw |
|- ( E. f ( f Fn suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc i ) = y ) /\ A. b e. suc i ( f ` b ) R ( f ` suc b ) ) <-> E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) |
| 52 |
39 51
|
bitrdi |
|- ( m = i -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) ) |
| 53 |
52
|
imbi1d |
|- ( m = i -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S y ) ) ) |
| 54 |
53
|
albidv |
|- ( m = i -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S y ) ) ) |
| 55 |
|
eqeq2 |
|- ( y = z -> ( ( g ` suc i ) = y <-> ( g ` suc i ) = z ) ) |
| 56 |
55
|
anbi2d |
|- ( y = z -> ( ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) <-> ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) ) ) |
| 57 |
56
|
3anbi2d |
|- ( y = z -> ( ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) <-> ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) ) |
| 58 |
57
|
exbidv |
|- ( y = z -> ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) <-> E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) ) |
| 59 |
|
breq2 |
|- ( y = z -> ( x S y <-> x S z ) ) |
| 60 |
58 59
|
imbi12d |
|- ( y = z -> ( ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S y ) <-> ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) ) |
| 61 |
60
|
cbvalvw |
|- ( A. y ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S y ) <-> A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) |
| 62 |
54 61
|
bitrdi |
|- ( m = i -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) ) |
| 63 |
62
|
imbi2d |
|- ( m = i -> ( ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) <-> ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) ) ) |
| 64 |
|
suceq |
|- ( m = suc i -> suc m = suc suc i ) |
| 65 |
|
suceq |
|- ( suc m = suc suc i -> suc suc m = suc suc suc i ) |
| 66 |
64 65
|
syl |
|- ( m = suc i -> suc suc m = suc suc suc i ) |
| 67 |
66
|
fneq2d |
|- ( m = suc i -> ( f Fn suc suc m <-> f Fn suc suc suc i ) ) |
| 68 |
64
|
fveqeq2d |
|- ( m = suc i -> ( ( f ` suc m ) = y <-> ( f ` suc suc i ) = y ) ) |
| 69 |
68
|
anbi2d |
|- ( m = suc i -> ( ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) <-> ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) ) ) |
| 70 |
64
|
raleqdv |
|- ( m = suc i -> ( A. a e. suc m ( f ` a ) R ( f ` suc a ) <-> A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) |
| 71 |
67 69 70
|
3anbi123d |
|- ( m = suc i -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) ) |
| 72 |
71
|
exbidv |
|- ( m = suc i -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) ) |
| 73 |
72
|
imbi1d |
|- ( m = suc i -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
| 74 |
73
|
albidv |
|- ( m = suc i -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
| 75 |
74
|
imbi2d |
|- ( m = suc i -> ( ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) <-> ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) ) |
| 76 |
|
suceq |
|- ( m = n -> suc m = suc n ) |
| 77 |
|
suceq |
|- ( suc m = suc n -> suc suc m = suc suc n ) |
| 78 |
76 77
|
syl |
|- ( m = n -> suc suc m = suc suc n ) |
| 79 |
78
|
fneq2d |
|- ( m = n -> ( f Fn suc suc m <-> f Fn suc suc n ) ) |
| 80 |
76
|
fveqeq2d |
|- ( m = n -> ( ( f ` suc m ) = y <-> ( f ` suc n ) = y ) ) |
| 81 |
80
|
anbi2d |
|- ( m = n -> ( ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) <-> ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) ) ) |
| 82 |
76
|
raleqdv |
|- ( m = n -> ( A. a e. suc m ( f ` a ) R ( f ` suc a ) <-> A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) |
| 83 |
79 81 82
|
3anbi123d |
|- ( m = n -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) ) |
| 84 |
83
|
exbidv |
|- ( m = n -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) ) |
| 85 |
84
|
imbi1d |
|- ( m = n -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
| 86 |
85
|
albidv |
|- ( m = n -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
| 87 |
86
|
imbi2d |
|- ( m = n -> ( ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) <-> ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) ) |
| 88 |
|
breq12 |
|- ( ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) -> ( ( f ` (/) ) R ( f ` 1o ) <-> x R y ) ) |
| 89 |
88
|
biimpa |
|- ( ( ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x R y ) |
| 90 |
89
|
3adant1 |
|- ( ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x R y ) |
| 91 |
|
ssbr |
|- ( R C_ S -> ( x R y -> x S y ) ) |
| 92 |
91
|
adantr |
|- ( ( R C_ S /\ ( S o. S ) C_ S ) -> ( x R y -> x S y ) ) |
| 93 |
90 92
|
syl5 |
|- ( ( R C_ S /\ ( S o. S ) C_ S ) -> ( ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x S y ) ) |
| 94 |
93
|
exlimdv |
|- ( ( R C_ S /\ ( S o. S ) C_ S ) -> ( E. f ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x S y ) ) |
| 95 |
94
|
alrimiv |
|- ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x S y ) ) |
| 96 |
|
fvex |
|- ( f ` suc i ) e. _V |
| 97 |
|
eqeq2 |
|- ( z = ( f ` suc i ) -> ( ( g ` suc i ) = z <-> ( g ` suc i ) = ( f ` suc i ) ) ) |
| 98 |
97
|
anbi2d |
|- ( z = ( f ` suc i ) -> ( ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) <-> ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) ) ) |
| 99 |
98
|
3anbi2d |
|- ( z = ( f ` suc i ) -> ( ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) <-> ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) ) |
| 100 |
99
|
exbidv |
|- ( z = ( f ` suc i ) -> ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) <-> E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) ) |
| 101 |
|
breq2 |
|- ( z = ( f ` suc i ) -> ( x S z <-> x S ( f ` suc i ) ) ) |
| 102 |
100 101
|
imbi12d |
|- ( z = ( f ` suc i ) -> ( ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) <-> ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S ( f ` suc i ) ) ) ) |
| 103 |
96 102
|
spcv |
|- ( A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) -> ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S ( f ` suc i ) ) ) |
| 104 |
|
simpr1 |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> f Fn suc suc suc i ) |
| 105 |
|
sssucid |
|- suc suc i C_ suc suc suc i |
| 106 |
|
fnssres |
|- ( ( f Fn suc suc suc i /\ suc suc i C_ suc suc suc i ) -> ( f |` suc suc i ) Fn suc suc i ) |
| 107 |
104 105 106
|
sylancl |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( f |` suc suc i ) Fn suc suc i ) |
| 108 |
|
peano2 |
|- ( i e. _om -> suc i e. _om ) |
| 109 |
108
|
ad2antrr |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> suc i e. _om ) |
| 110 |
|
nnord |
|- ( suc i e. _om -> Ord suc i ) |
| 111 |
109 110
|
syl |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> Ord suc i ) |
| 112 |
|
0elsuc |
|- ( Ord suc i -> (/) e. suc suc i ) |
| 113 |
111 112
|
syl |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> (/) e. suc suc i ) |
| 114 |
113
|
fvresd |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( ( f |` suc suc i ) ` (/) ) = ( f ` (/) ) ) |
| 115 |
|
simpr2l |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` (/) ) = x ) |
| 116 |
114 115
|
eqtrd |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( ( f |` suc suc i ) ` (/) ) = x ) |
| 117 |
|
vex |
|- i e. _V |
| 118 |
117
|
sucex |
|- suc i e. _V |
| 119 |
118
|
sucid |
|- suc i e. suc suc i |
| 120 |
|
fvres |
|- ( suc i e. suc suc i -> ( ( f |` suc suc i ) ` suc i ) = ( f ` suc i ) ) |
| 121 |
119 120
|
mp1i |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( ( f |` suc suc i ) ` suc i ) = ( f ` suc i ) ) |
| 122 |
|
simplr3 |
|- ( ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) /\ b e. suc i ) -> A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) |
| 123 |
|
elelsuc |
|- ( b e. suc i -> b e. suc suc i ) |
| 124 |
123
|
adantl |
|- ( ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) /\ b e. suc i ) -> b e. suc suc i ) |
| 125 |
35 122 124
|
rspcdva |
|- ( ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) /\ b e. suc i ) -> ( f ` b ) R ( f ` suc b ) ) |
| 126 |
124
|
fvresd |
|- ( ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) /\ b e. suc i ) -> ( ( f |` suc suc i ) ` b ) = ( f ` b ) ) |
| 127 |
|
ordsucelsuc |
|- ( Ord suc i -> ( b e. suc i <-> suc b e. suc suc i ) ) |
| 128 |
111 127
|
syl |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( b e. suc i <-> suc b e. suc suc i ) ) |
| 129 |
128
|
biimpa |
|- ( ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) /\ b e. suc i ) -> suc b e. suc suc i ) |
| 130 |
129
|
fvresd |
|- ( ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) /\ b e. suc i ) -> ( ( f |` suc suc i ) ` suc b ) = ( f ` suc b ) ) |
| 131 |
125 126 130
|
3brtr4d |
|- ( ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) /\ b e. suc i ) -> ( ( f |` suc suc i ) ` b ) R ( ( f |` suc suc i ) ` suc b ) ) |
| 132 |
131
|
ralrimiva |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> A. b e. suc i ( ( f |` suc suc i ) ` b ) R ( ( f |` suc suc i ) ` suc b ) ) |
| 133 |
|
vex |
|- f e. _V |
| 134 |
133
|
resex |
|- ( f |` suc suc i ) e. _V |
| 135 |
|
fneq1 |
|- ( g = ( f |` suc suc i ) -> ( g Fn suc suc i <-> ( f |` suc suc i ) Fn suc suc i ) ) |
| 136 |
|
fveq1 |
|- ( g = ( f |` suc suc i ) -> ( g ` (/) ) = ( ( f |` suc suc i ) ` (/) ) ) |
| 137 |
136
|
eqeq1d |
|- ( g = ( f |` suc suc i ) -> ( ( g ` (/) ) = x <-> ( ( f |` suc suc i ) ` (/) ) = x ) ) |
| 138 |
|
fveq1 |
|- ( g = ( f |` suc suc i ) -> ( g ` suc i ) = ( ( f |` suc suc i ) ` suc i ) ) |
| 139 |
138
|
eqeq1d |
|- ( g = ( f |` suc suc i ) -> ( ( g ` suc i ) = ( f ` suc i ) <-> ( ( f |` suc suc i ) ` suc i ) = ( f ` suc i ) ) ) |
| 140 |
137 139
|
anbi12d |
|- ( g = ( f |` suc suc i ) -> ( ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) <-> ( ( ( f |` suc suc i ) ` (/) ) = x /\ ( ( f |` suc suc i ) ` suc i ) = ( f ` suc i ) ) ) ) |
| 141 |
|
fveq1 |
|- ( g = ( f |` suc suc i ) -> ( g ` b ) = ( ( f |` suc suc i ) ` b ) ) |
| 142 |
|
fveq1 |
|- ( g = ( f |` suc suc i ) -> ( g ` suc b ) = ( ( f |` suc suc i ) ` suc b ) ) |
| 143 |
141 142
|
breq12d |
|- ( g = ( f |` suc suc i ) -> ( ( g ` b ) R ( g ` suc b ) <-> ( ( f |` suc suc i ) ` b ) R ( ( f |` suc suc i ) ` suc b ) ) ) |
| 144 |
143
|
ralbidv |
|- ( g = ( f |` suc suc i ) -> ( A. b e. suc i ( g ` b ) R ( g ` suc b ) <-> A. b e. suc i ( ( f |` suc suc i ) ` b ) R ( ( f |` suc suc i ) ` suc b ) ) ) |
| 145 |
135 140 144
|
3anbi123d |
|- ( g = ( f |` suc suc i ) -> ( ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) <-> ( ( f |` suc suc i ) Fn suc suc i /\ ( ( ( f |` suc suc i ) ` (/) ) = x /\ ( ( f |` suc suc i ) ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( ( f |` suc suc i ) ` b ) R ( ( f |` suc suc i ) ` suc b ) ) ) ) |
| 146 |
134 145
|
spcev |
|- ( ( ( f |` suc suc i ) Fn suc suc i /\ ( ( ( f |` suc suc i ) ` (/) ) = x /\ ( ( f |` suc suc i ) ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( ( f |` suc suc i ) ` b ) R ( ( f |` suc suc i ) ` suc b ) ) -> E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) |
| 147 |
107 116 121 132 146
|
syl121anc |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) |
| 148 |
|
simplrl |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> R C_ S ) |
| 149 |
|
simpr3 |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) |
| 150 |
|
ssbr |
|- ( R C_ S -> ( ( f ` a ) R ( f ` suc a ) -> ( f ` a ) S ( f ` suc a ) ) ) |
| 151 |
150
|
ralimdv |
|- ( R C_ S -> ( A. a e. suc suc i ( f ` a ) R ( f ` suc a ) -> A. a e. suc suc i ( f ` a ) S ( f ` suc a ) ) ) |
| 152 |
148 149 151
|
sylc |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> A. a e. suc suc i ( f ` a ) S ( f ` suc a ) ) |
| 153 |
|
fveq2 |
|- ( a = suc i -> ( f ` a ) = ( f ` suc i ) ) |
| 154 |
|
suceq |
|- ( a = suc i -> suc a = suc suc i ) |
| 155 |
154
|
fveq2d |
|- ( a = suc i -> ( f ` suc a ) = ( f ` suc suc i ) ) |
| 156 |
153 155
|
breq12d |
|- ( a = suc i -> ( ( f ` a ) S ( f ` suc a ) <-> ( f ` suc i ) S ( f ` suc suc i ) ) ) |
| 157 |
156
|
rspcv |
|- ( suc i e. suc suc i -> ( A. a e. suc suc i ( f ` a ) S ( f ` suc a ) -> ( f ` suc i ) S ( f ` suc suc i ) ) ) |
| 158 |
119 152 157
|
mpsyl |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` suc i ) S ( f ` suc suc i ) ) |
| 159 |
|
simpr2r |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` suc suc i ) = y ) |
| 160 |
158 159
|
breqtrd |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` suc i ) S y ) |
| 161 |
|
breq1 |
|- ( z = ( f ` suc i ) -> ( z S y <-> ( f ` suc i ) S y ) ) |
| 162 |
101 161
|
anbi12d |
|- ( z = ( f ` suc i ) -> ( ( x S z /\ z S y ) <-> ( x S ( f ` suc i ) /\ ( f ` suc i ) S y ) ) ) |
| 163 |
96 162
|
spcev |
|- ( ( x S ( f ` suc i ) /\ ( f ` suc i ) S y ) -> E. z ( x S z /\ z S y ) ) |
| 164 |
|
vex |
|- x e. _V |
| 165 |
|
vex |
|- y e. _V |
| 166 |
164 165
|
brco |
|- ( x ( S o. S ) y <-> E. z ( x S z /\ z S y ) ) |
| 167 |
163 166
|
sylibr |
|- ( ( x S ( f ` suc i ) /\ ( f ` suc i ) S y ) -> x ( S o. S ) y ) |
| 168 |
|
simplrr |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( S o. S ) C_ S ) |
| 169 |
168
|
ssbrd |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( x ( S o. S ) y -> x S y ) ) |
| 170 |
167 169
|
syl5 |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( ( x S ( f ` suc i ) /\ ( f ` suc i ) S y ) -> x S y ) ) |
| 171 |
160 170
|
mpan2d |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( x S ( f ` suc i ) -> x S y ) ) |
| 172 |
147 171
|
embantd |
|- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S ( f ` suc i ) ) -> x S y ) ) |
| 173 |
172
|
ex |
|- ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) -> ( ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> ( ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S ( f ` suc i ) ) -> x S y ) ) ) |
| 174 |
173
|
com23 |
|- ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) -> ( ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S ( f ` suc i ) ) -> ( ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
| 175 |
103 174
|
syl5 |
|- ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) -> ( A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) -> ( ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
| 176 |
175
|
3impia |
|- ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) /\ A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) -> ( ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
| 177 |
176
|
exlimdv |
|- ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) /\ A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) -> ( E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
| 178 |
177
|
alrimiv |
|- ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) /\ A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) -> A. y ( E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
| 179 |
178
|
3exp |
|- ( i e. _om -> ( ( R C_ S /\ ( S o. S ) C_ S ) -> ( A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) -> A. y ( E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) ) |
| 180 |
179
|
a2d |
|- ( i e. _om -> ( ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) -> ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) ) |
| 181 |
24 63 75 87 95 180
|
finds |
|- ( n e. _om -> ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
| 182 |
181
|
com12 |
|- ( ( R C_ S /\ ( S o. S ) C_ S ) -> ( n e. _om -> A. y ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
| 183 |
182
|
ralrimiv |
|- ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. n e. _om A. y ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
| 184 |
|
ralcom4 |
|- ( A. n e. _om A. y ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y A. n e. _om ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
| 185 |
|
r19.23v |
|- ( A. n e. _om ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
| 186 |
185
|
albii |
|- ( A. y A. n e. _om ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
| 187 |
184 186
|
bitri |
|- ( A. n e. _om A. y ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
| 188 |
183 187
|
sylib |
|- ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
| 189 |
|
brttrcl2 |
|- ( x t++ R y <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) |
| 190 |
|
df-br |
|- ( x t++ R y <-> <. x , y >. e. t++ R ) |
| 191 |
189 190
|
bitr3i |
|- ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) <-> <. x , y >. e. t++ R ) |
| 192 |
|
df-br |
|- ( x S y <-> <. x , y >. e. S ) |
| 193 |
191 192
|
imbi12i |
|- ( ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) |
| 194 |
193
|
albii |
|- ( A. y ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) |
| 195 |
188 194
|
sylib |
|- ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) |
| 196 |
195
|
alrimiv |
|- ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. x A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) |
| 197 |
|
relttrcl |
|- Rel t++ R |
| 198 |
|
ssrel |
|- ( Rel t++ R -> ( t++ R C_ S <-> A. x A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) ) |
| 199 |
197 198
|
ax-mp |
|- ( t++ R C_ S <-> A. x A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) |
| 200 |
196 199
|
sylibr |
|- ( ( R C_ S /\ ( S o. S ) C_ S ) -> t++ R C_ S ) |