Metamath Proof Explorer


Theorem ttukey

Description: The Teichmüller-Tukey Lemma, an Axiom of Choice equivalent. If A is a nonempty collection of finite character, then A has a maximal element with respect to inclusion. Here "finite character" means that x e. A iff every finite subset of x is in A . (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Hypothesis ttukey.1
|- A e. _V
Assertion ttukey
|- ( ( A =/= (/) /\ A. x ( x e. A <-> ( ~P x i^i Fin ) C_ A ) ) -> E. x e. A A. y e. A -. x C. y )

Proof

Step Hyp Ref Expression
1 ttukey.1
 |-  A e. _V
2 1 uniex
 |-  U. A e. _V
3 numth3
 |-  ( U. A e. _V -> U. A e. dom card )
4 2 3 ax-mp
 |-  U. A e. dom card
5 ttukeyg
 |-  ( ( U. A e. dom card /\ A =/= (/) /\ A. x ( x e. A <-> ( ~P x i^i Fin ) C_ A ) ) -> E. x e. A A. y e. A -. x C. y )
6 4 5 mp3an1
 |-  ( ( A =/= (/) /\ A. x ( x e. A <-> ( ~P x i^i Fin ) C_ A ) ) -> E. x e. A A. y e. A -. x C. y )