Description: The topology induced by a constructed uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tuslem.k | |- K = ( toUnifSp ` U ) |
|
| tustopn.j | |- J = ( unifTop ` U ) |
||
| Assertion | tustopn | |- ( U e. ( UnifOn ` X ) -> J = ( TopOpen ` K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tuslem.k | |- K = ( toUnifSp ` U ) |
|
| 2 | tustopn.j | |- J = ( unifTop ` U ) |
|
| 3 | 1 | tuslem | |- ( U e. ( UnifOn ` X ) -> ( X = ( Base ` K ) /\ U = ( UnifSet ` K ) /\ ( unifTop ` U ) = ( TopOpen ` K ) ) ) |
| 4 | 3 | simp3d | |- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) = ( TopOpen ` K ) ) |
| 5 | 2 4 | eqtrid | |- ( U e. ( UnifOn ` X ) -> J = ( TopOpen ` K ) ) |