Step |
Hyp |
Ref |
Expression |
1 |
|
tuslem.k |
|- K = ( toUnifSp ` U ) |
2 |
|
utoptopon |
|- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) e. ( TopOn ` X ) ) |
3 |
|
eqid |
|- ( unifTop ` U ) = ( unifTop ` U ) |
4 |
1 3
|
tustopn |
|- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) = ( TopOpen ` K ) ) |
5 |
1
|
tusbas |
|- ( U e. ( UnifOn ` X ) -> X = ( Base ` K ) ) |
6 |
5
|
fveq2d |
|- ( U e. ( UnifOn ` X ) -> ( TopOn ` X ) = ( TopOn ` ( Base ` K ) ) ) |
7 |
2 4 6
|
3eltr3d |
|- ( U e. ( UnifOn ` X ) -> ( TopOpen ` K ) e. ( TopOn ` ( Base ` K ) ) ) |
8 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
9 |
|
eqid |
|- ( TopOpen ` K ) = ( TopOpen ` K ) |
10 |
8 9
|
istps |
|- ( K e. TopSp <-> ( TopOpen ` K ) e. ( TopOn ` ( Base ` K ) ) ) |
11 |
7 10
|
sylibr |
|- ( U e. ( UnifOn ` X ) -> K e. TopSp ) |