Description: The uniform structure of a constructed uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tuslem.k | |- K = ( toUnifSp ` U ) |
|
Assertion | tusunif | |- ( U e. ( UnifOn ` X ) -> U = ( UnifSet ` K ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tuslem.k | |- K = ( toUnifSp ` U ) |
|
2 | 1 | tuslem | |- ( U e. ( UnifOn ` X ) -> ( X = ( Base ` K ) /\ U = ( UnifSet ` K ) /\ ( unifTop ` U ) = ( TopOpen ` K ) ) ) |
3 | 2 | simp2d | |- ( U e. ( UnifOn ` X ) -> U = ( UnifSet ` K ) ) |