Metamath Proof Explorer


Theorem tvclvec

Description: A topological vector space is a vector space. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Assertion tvclvec
|- ( W e. TopVec -> W e. LVec )

Proof

Step Hyp Ref Expression
1 tvclmod
 |-  ( W e. TopVec -> W e. LMod )
2 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
3 2 tvctdrg
 |-  ( W e. TopVec -> ( Scalar ` W ) e. TopDRing )
4 tdrgdrng
 |-  ( ( Scalar ` W ) e. TopDRing -> ( Scalar ` W ) e. DivRing )
5 3 4 syl
 |-  ( W e. TopVec -> ( Scalar ` W ) e. DivRing )
6 2 islvec
 |-  ( W e. LVec <-> ( W e. LMod /\ ( Scalar ` W ) e. DivRing ) )
7 1 5 6 sylanbrc
 |-  ( W e. TopVec -> W e. LVec )