Metamath Proof Explorer


Theorem twonotinotbothi

Description: From these two negated implications it is not the case their nonnegated forms are both true. (Contributed by Jarvin Udandy, 11-Sep-2020)

Ref Expression
Hypotheses twonotinotbothi.1
|- -. ( ph -> ps )
twonotinotbothi.2
|- -. ( ch -> th )
Assertion twonotinotbothi
|- -. ( ( ph -> ps ) /\ ( ch -> th ) )

Proof

Step Hyp Ref Expression
1 twonotinotbothi.1
 |-  -. ( ph -> ps )
2 twonotinotbothi.2
 |-  -. ( ch -> th )
3 1 orci
 |-  ( -. ( ph -> ps ) \/ -. ( ch -> th ) )
4 pm3.14
 |-  ( ( -. ( ph -> ps ) \/ -. ( ch -> th ) ) -> -. ( ( ph -> ps ) /\ ( ch -> th ) ) )
5 3 4 ax-mp
 |-  -. ( ( ph -> ps ) /\ ( ch -> th ) )