Step |
Hyp |
Ref |
Expression |
1 |
|
f1stres |
|- ( 1st |` ( X X. Y ) ) : ( X X. Y ) --> X |
2 |
1
|
a1i |
|- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( 1st |` ( X X. Y ) ) : ( X X. Y ) --> X ) |
3 |
|
ffn |
|- ( ( 1st |` ( X X. Y ) ) : ( X X. Y ) --> X -> ( 1st |` ( X X. Y ) ) Fn ( X X. Y ) ) |
4 |
|
elpreima |
|- ( ( 1st |` ( X X. Y ) ) Fn ( X X. Y ) -> ( z e. ( `' ( 1st |` ( X X. Y ) ) " w ) <-> ( z e. ( X X. Y ) /\ ( ( 1st |` ( X X. Y ) ) ` z ) e. w ) ) ) |
5 |
1 3 4
|
mp2b |
|- ( z e. ( `' ( 1st |` ( X X. Y ) ) " w ) <-> ( z e. ( X X. Y ) /\ ( ( 1st |` ( X X. Y ) ) ` z ) e. w ) ) |
6 |
|
fvres |
|- ( z e. ( X X. Y ) -> ( ( 1st |` ( X X. Y ) ) ` z ) = ( 1st ` z ) ) |
7 |
6
|
eleq1d |
|- ( z e. ( X X. Y ) -> ( ( ( 1st |` ( X X. Y ) ) ` z ) e. w <-> ( 1st ` z ) e. w ) ) |
8 |
|
1st2nd2 |
|- ( z e. ( X X. Y ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
9 |
|
xp2nd |
|- ( z e. ( X X. Y ) -> ( 2nd ` z ) e. Y ) |
10 |
|
elxp6 |
|- ( z e. ( w X. Y ) <-> ( z = <. ( 1st ` z ) , ( 2nd ` z ) >. /\ ( ( 1st ` z ) e. w /\ ( 2nd ` z ) e. Y ) ) ) |
11 |
|
anass |
|- ( ( ( z = <. ( 1st ` z ) , ( 2nd ` z ) >. /\ ( 1st ` z ) e. w ) /\ ( 2nd ` z ) e. Y ) <-> ( z = <. ( 1st ` z ) , ( 2nd ` z ) >. /\ ( ( 1st ` z ) e. w /\ ( 2nd ` z ) e. Y ) ) ) |
12 |
|
an32 |
|- ( ( ( z = <. ( 1st ` z ) , ( 2nd ` z ) >. /\ ( 1st ` z ) e. w ) /\ ( 2nd ` z ) e. Y ) <-> ( ( z = <. ( 1st ` z ) , ( 2nd ` z ) >. /\ ( 2nd ` z ) e. Y ) /\ ( 1st ` z ) e. w ) ) |
13 |
10 11 12
|
3bitr2i |
|- ( z e. ( w X. Y ) <-> ( ( z = <. ( 1st ` z ) , ( 2nd ` z ) >. /\ ( 2nd ` z ) e. Y ) /\ ( 1st ` z ) e. w ) ) |
14 |
13
|
baib |
|- ( ( z = <. ( 1st ` z ) , ( 2nd ` z ) >. /\ ( 2nd ` z ) e. Y ) -> ( z e. ( w X. Y ) <-> ( 1st ` z ) e. w ) ) |
15 |
8 9 14
|
syl2anc |
|- ( z e. ( X X. Y ) -> ( z e. ( w X. Y ) <-> ( 1st ` z ) e. w ) ) |
16 |
7 15
|
bitr4d |
|- ( z e. ( X X. Y ) -> ( ( ( 1st |` ( X X. Y ) ) ` z ) e. w <-> z e. ( w X. Y ) ) ) |
17 |
16
|
pm5.32i |
|- ( ( z e. ( X X. Y ) /\ ( ( 1st |` ( X X. Y ) ) ` z ) e. w ) <-> ( z e. ( X X. Y ) /\ z e. ( w X. Y ) ) ) |
18 |
5 17
|
bitri |
|- ( z e. ( `' ( 1st |` ( X X. Y ) ) " w ) <-> ( z e. ( X X. Y ) /\ z e. ( w X. Y ) ) ) |
19 |
|
toponss |
|- ( ( R e. ( TopOn ` X ) /\ w e. R ) -> w C_ X ) |
20 |
19
|
adantlr |
|- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. R ) -> w C_ X ) |
21 |
|
xpss1 |
|- ( w C_ X -> ( w X. Y ) C_ ( X X. Y ) ) |
22 |
20 21
|
syl |
|- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. R ) -> ( w X. Y ) C_ ( X X. Y ) ) |
23 |
22
|
sseld |
|- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. R ) -> ( z e. ( w X. Y ) -> z e. ( X X. Y ) ) ) |
24 |
23
|
pm4.71rd |
|- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. R ) -> ( z e. ( w X. Y ) <-> ( z e. ( X X. Y ) /\ z e. ( w X. Y ) ) ) ) |
25 |
18 24
|
bitr4id |
|- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. R ) -> ( z e. ( `' ( 1st |` ( X X. Y ) ) " w ) <-> z e. ( w X. Y ) ) ) |
26 |
25
|
eqrdv |
|- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. R ) -> ( `' ( 1st |` ( X X. Y ) ) " w ) = ( w X. Y ) ) |
27 |
|
toponmax |
|- ( S e. ( TopOn ` Y ) -> Y e. S ) |
28 |
27
|
ad2antlr |
|- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. R ) -> Y e. S ) |
29 |
|
txopn |
|- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ ( w e. R /\ Y e. S ) ) -> ( w X. Y ) e. ( R tX S ) ) |
30 |
29
|
anassrs |
|- ( ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. R ) /\ Y e. S ) -> ( w X. Y ) e. ( R tX S ) ) |
31 |
28 30
|
mpdan |
|- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. R ) -> ( w X. Y ) e. ( R tX S ) ) |
32 |
26 31
|
eqeltrd |
|- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. R ) -> ( `' ( 1st |` ( X X. Y ) ) " w ) e. ( R tX S ) ) |
33 |
32
|
ralrimiva |
|- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> A. w e. R ( `' ( 1st |` ( X X. Y ) ) " w ) e. ( R tX S ) ) |
34 |
|
txtopon |
|- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( R tX S ) e. ( TopOn ` ( X X. Y ) ) ) |
35 |
|
simpl |
|- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> R e. ( TopOn ` X ) ) |
36 |
|
iscn |
|- ( ( ( R tX S ) e. ( TopOn ` ( X X. Y ) ) /\ R e. ( TopOn ` X ) ) -> ( ( 1st |` ( X X. Y ) ) e. ( ( R tX S ) Cn R ) <-> ( ( 1st |` ( X X. Y ) ) : ( X X. Y ) --> X /\ A. w e. R ( `' ( 1st |` ( X X. Y ) ) " w ) e. ( R tX S ) ) ) ) |
37 |
34 35 36
|
syl2anc |
|- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( ( 1st |` ( X X. Y ) ) e. ( ( R tX S ) Cn R ) <-> ( ( 1st |` ( X X. Y ) ) : ( X X. Y ) --> X /\ A. w e. R ( `' ( 1st |` ( X X. Y ) ) " w ) e. ( R tX S ) ) ) ) |
38 |
2 33 37
|
mpbir2and |
|- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( 1st |` ( X X. Y ) ) e. ( ( R tX S ) Cn R ) ) |