| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							is2ndc | 
							 |-  ( R e. 2ndc <-> E. r e. TopBases ( r ~<_ _om /\ ( topGen ` r ) = R ) )  | 
						
						
							| 2 | 
							
								
							 | 
							is2ndc | 
							 |-  ( S e. 2ndc <-> E. s e. TopBases ( s ~<_ _om /\ ( topGen ` s ) = S ) )  | 
						
						
							| 3 | 
							
								
							 | 
							reeanv | 
							 |-  ( E. r e. TopBases E. s e. TopBases ( ( r ~<_ _om /\ ( topGen ` r ) = R ) /\ ( s ~<_ _om /\ ( topGen ` s ) = S ) ) <-> ( E. r e. TopBases ( r ~<_ _om /\ ( topGen ` r ) = R ) /\ E. s e. TopBases ( s ~<_ _om /\ ( topGen ` s ) = S ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							an4 | 
							 |-  ( ( ( r ~<_ _om /\ ( topGen ` r ) = R ) /\ ( s ~<_ _om /\ ( topGen ` s ) = S ) ) <-> ( ( r ~<_ _om /\ s ~<_ _om ) /\ ( ( topGen ` r ) = R /\ ( topGen ` s ) = S ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							txbasval | 
							 |-  ( ( r e. TopBases /\ s e. TopBases ) -> ( ( topGen ` r ) tX ( topGen ` s ) ) = ( r tX s ) )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ran ( x e. r , y e. s |-> ( x X. y ) ) = ran ( x e. r , y e. s |-> ( x X. y ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							txval | 
							 |-  ( ( r e. TopBases /\ s e. TopBases ) -> ( r tX s ) = ( topGen ` ran ( x e. r , y e. s |-> ( x X. y ) ) ) )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							eqtrd | 
							 |-  ( ( r e. TopBases /\ s e. TopBases ) -> ( ( topGen ` r ) tX ( topGen ` s ) ) = ( topGen ` ran ( x e. r , y e. s |-> ( x X. y ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( ( topGen ` r ) tX ( topGen ` s ) ) = ( topGen ` ran ( x e. r , y e. s |-> ( x X. y ) ) ) )  | 
						
						
							| 10 | 
							
								6
							 | 
							txbas | 
							 |-  ( ( r e. TopBases /\ s e. TopBases ) -> ran ( x e. r , y e. s |-> ( x X. y ) ) e. TopBases )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							 |-  ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ran ( x e. r , y e. s |-> ( x X. y ) ) e. TopBases )  | 
						
						
							| 12 | 
							
								
							 | 
							omelon | 
							 |-  _om e. On  | 
						
						
							| 13 | 
							
								
							 | 
							vex | 
							 |-  s e. _V  | 
						
						
							| 14 | 
							
								13
							 | 
							xpdom1 | 
							 |-  ( r ~<_ _om -> ( r X. s ) ~<_ ( _om X. s ) )  | 
						
						
							| 15 | 
							
								
							 | 
							omex | 
							 |-  _om e. _V  | 
						
						
							| 16 | 
							
								15
							 | 
							xpdom2 | 
							 |-  ( s ~<_ _om -> ( _om X. s ) ~<_ ( _om X. _om ) )  | 
						
						
							| 17 | 
							
								
							 | 
							domtr | 
							 |-  ( ( ( r X. s ) ~<_ ( _om X. s ) /\ ( _om X. s ) ~<_ ( _om X. _om ) ) -> ( r X. s ) ~<_ ( _om X. _om ) )  | 
						
						
							| 18 | 
							
								14 16 17
							 | 
							syl2an | 
							 |-  ( ( r ~<_ _om /\ s ~<_ _om ) -> ( r X. s ) ~<_ ( _om X. _om ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantl | 
							 |-  ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( r X. s ) ~<_ ( _om X. _om ) )  | 
						
						
							| 20 | 
							
								
							 | 
							xpomen | 
							 |-  ( _om X. _om ) ~~ _om  | 
						
						
							| 21 | 
							
								
							 | 
							domentr | 
							 |-  ( ( ( r X. s ) ~<_ ( _om X. _om ) /\ ( _om X. _om ) ~~ _om ) -> ( r X. s ) ~<_ _om )  | 
						
						
							| 22 | 
							
								19 20 21
							 | 
							sylancl | 
							 |-  ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( r X. s ) ~<_ _om )  | 
						
						
							| 23 | 
							
								
							 | 
							ondomen | 
							 |-  ( ( _om e. On /\ ( r X. s ) ~<_ _om ) -> ( r X. s ) e. dom card )  | 
						
						
							| 24 | 
							
								12 22 23
							 | 
							sylancr | 
							 |-  ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( r X. s ) e. dom card )  | 
						
						
							| 25 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. r , y e. s |-> ( x X. y ) ) = ( x e. r , y e. s |-> ( x X. y ) )  | 
						
						
							| 26 | 
							
								
							 | 
							vex | 
							 |-  x e. _V  | 
						
						
							| 27 | 
							
								
							 | 
							vex | 
							 |-  y e. _V  | 
						
						
							| 28 | 
							
								26 27
							 | 
							xpex | 
							 |-  ( x X. y ) e. _V  | 
						
						
							| 29 | 
							
								25 28
							 | 
							fnmpoi | 
							 |-  ( x e. r , y e. s |-> ( x X. y ) ) Fn ( r X. s )  | 
						
						
							| 30 | 
							
								29
							 | 
							a1i | 
							 |-  ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( x e. r , y e. s |-> ( x X. y ) ) Fn ( r X. s ) )  | 
						
						
							| 31 | 
							
								
							 | 
							dffn4 | 
							 |-  ( ( x e. r , y e. s |-> ( x X. y ) ) Fn ( r X. s ) <-> ( x e. r , y e. s |-> ( x X. y ) ) : ( r X. s ) -onto-> ran ( x e. r , y e. s |-> ( x X. y ) ) )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							sylib | 
							 |-  ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( x e. r , y e. s |-> ( x X. y ) ) : ( r X. s ) -onto-> ran ( x e. r , y e. s |-> ( x X. y ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							fodomnum | 
							 |-  ( ( r X. s ) e. dom card -> ( ( x e. r , y e. s |-> ( x X. y ) ) : ( r X. s ) -onto-> ran ( x e. r , y e. s |-> ( x X. y ) ) -> ran ( x e. r , y e. s |-> ( x X. y ) ) ~<_ ( r X. s ) ) )  | 
						
						
							| 34 | 
							
								24 32 33
							 | 
							sylc | 
							 |-  ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ran ( x e. r , y e. s |-> ( x X. y ) ) ~<_ ( r X. s ) )  | 
						
						
							| 35 | 
							
								
							 | 
							domtr | 
							 |-  ( ( ran ( x e. r , y e. s |-> ( x X. y ) ) ~<_ ( r X. s ) /\ ( r X. s ) ~<_ _om ) -> ran ( x e. r , y e. s |-> ( x X. y ) ) ~<_ _om )  | 
						
						
							| 36 | 
							
								34 22 35
							 | 
							syl2anc | 
							 |-  ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ran ( x e. r , y e. s |-> ( x X. y ) ) ~<_ _om )  | 
						
						
							| 37 | 
							
								
							 | 
							2ndci | 
							 |-  ( ( ran ( x e. r , y e. s |-> ( x X. y ) ) e. TopBases /\ ran ( x e. r , y e. s |-> ( x X. y ) ) ~<_ _om ) -> ( topGen ` ran ( x e. r , y e. s |-> ( x X. y ) ) ) e. 2ndc )  | 
						
						
							| 38 | 
							
								11 36 37
							 | 
							syl2anc | 
							 |-  ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( topGen ` ran ( x e. r , y e. s |-> ( x X. y ) ) ) e. 2ndc )  | 
						
						
							| 39 | 
							
								9 38
							 | 
							eqeltrd | 
							 |-  ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( ( topGen ` r ) tX ( topGen ` s ) ) e. 2ndc )  | 
						
						
							| 40 | 
							
								
							 | 
							oveq12 | 
							 |-  ( ( ( topGen ` r ) = R /\ ( topGen ` s ) = S ) -> ( ( topGen ` r ) tX ( topGen ` s ) ) = ( R tX S ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							eleq1d | 
							 |-  ( ( ( topGen ` r ) = R /\ ( topGen ` s ) = S ) -> ( ( ( topGen ` r ) tX ( topGen ` s ) ) e. 2ndc <-> ( R tX S ) e. 2ndc ) )  | 
						
						
							| 42 | 
							
								39 41
							 | 
							syl5ibcom | 
							 |-  ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( ( ( topGen ` r ) = R /\ ( topGen ` s ) = S ) -> ( R tX S ) e. 2ndc ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							expimpd | 
							 |-  ( ( r e. TopBases /\ s e. TopBases ) -> ( ( ( r ~<_ _om /\ s ~<_ _om ) /\ ( ( topGen ` r ) = R /\ ( topGen ` s ) = S ) ) -> ( R tX S ) e. 2ndc ) )  | 
						
						
							| 44 | 
							
								4 43
							 | 
							biimtrid | 
							 |-  ( ( r e. TopBases /\ s e. TopBases ) -> ( ( ( r ~<_ _om /\ ( topGen ` r ) = R ) /\ ( s ~<_ _om /\ ( topGen ` s ) = S ) ) -> ( R tX S ) e. 2ndc ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							rexlimivv | 
							 |-  ( E. r e. TopBases E. s e. TopBases ( ( r ~<_ _om /\ ( topGen ` r ) = R ) /\ ( s ~<_ _om /\ ( topGen ` s ) = S ) ) -> ( R tX S ) e. 2ndc )  | 
						
						
							| 46 | 
							
								3 45
							 | 
							sylbir | 
							 |-  ( ( E. r e. TopBases ( r ~<_ _om /\ ( topGen ` r ) = R ) /\ E. s e. TopBases ( s ~<_ _om /\ ( topGen ` s ) = S ) ) -> ( R tX S ) e. 2ndc )  | 
						
						
							| 47 | 
							
								1 2 46
							 | 
							syl2anb | 
							 |-  ( ( R e. 2ndc /\ S e. 2ndc ) -> ( R tX S ) e. 2ndc )  |