| Step | Hyp | Ref | Expression | 
						
							| 1 |  | txcmpb.1 |  |-  X = U. R | 
						
							| 2 |  | txcmpb.2 |  |-  Y = U. S | 
						
							| 3 |  | simpr |  |-  ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( R tX S ) e. Comp ) | 
						
							| 4 |  | simplrr |  |-  ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> Y =/= (/) ) | 
						
							| 5 |  | fo1stres |  |-  ( Y =/= (/) -> ( 1st |` ( X X. Y ) ) : ( X X. Y ) -onto-> X ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( 1st |` ( X X. Y ) ) : ( X X. Y ) -onto-> X ) | 
						
							| 7 | 1 2 | txuni |  |-  ( ( R e. Top /\ S e. Top ) -> ( X X. Y ) = U. ( R tX S ) ) | 
						
							| 8 | 7 | ad2antrr |  |-  ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( X X. Y ) = U. ( R tX S ) ) | 
						
							| 9 |  | foeq2 |  |-  ( ( X X. Y ) = U. ( R tX S ) -> ( ( 1st |` ( X X. Y ) ) : ( X X. Y ) -onto-> X <-> ( 1st |` ( X X. Y ) ) : U. ( R tX S ) -onto-> X ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( ( 1st |` ( X X. Y ) ) : ( X X. Y ) -onto-> X <-> ( 1st |` ( X X. Y ) ) : U. ( R tX S ) -onto-> X ) ) | 
						
							| 11 | 6 10 | mpbid |  |-  ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( 1st |` ( X X. Y ) ) : U. ( R tX S ) -onto-> X ) | 
						
							| 12 | 1 | toptopon |  |-  ( R e. Top <-> R e. ( TopOn ` X ) ) | 
						
							| 13 | 2 | toptopon |  |-  ( S e. Top <-> S e. ( TopOn ` Y ) ) | 
						
							| 14 |  | tx1cn |  |-  ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( 1st |` ( X X. Y ) ) e. ( ( R tX S ) Cn R ) ) | 
						
							| 15 | 12 13 14 | syl2anb |  |-  ( ( R e. Top /\ S e. Top ) -> ( 1st |` ( X X. Y ) ) e. ( ( R tX S ) Cn R ) ) | 
						
							| 16 | 15 | ad2antrr |  |-  ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( 1st |` ( X X. Y ) ) e. ( ( R tX S ) Cn R ) ) | 
						
							| 17 | 1 | cncmp |  |-  ( ( ( R tX S ) e. Comp /\ ( 1st |` ( X X. Y ) ) : U. ( R tX S ) -onto-> X /\ ( 1st |` ( X X. Y ) ) e. ( ( R tX S ) Cn R ) ) -> R e. Comp ) | 
						
							| 18 | 3 11 16 17 | syl3anc |  |-  ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> R e. Comp ) | 
						
							| 19 |  | simplrl |  |-  ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> X =/= (/) ) | 
						
							| 20 |  | fo2ndres |  |-  ( X =/= (/) -> ( 2nd |` ( X X. Y ) ) : ( X X. Y ) -onto-> Y ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( 2nd |` ( X X. Y ) ) : ( X X. Y ) -onto-> Y ) | 
						
							| 22 |  | foeq2 |  |-  ( ( X X. Y ) = U. ( R tX S ) -> ( ( 2nd |` ( X X. Y ) ) : ( X X. Y ) -onto-> Y <-> ( 2nd |` ( X X. Y ) ) : U. ( R tX S ) -onto-> Y ) ) | 
						
							| 23 | 8 22 | syl |  |-  ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( ( 2nd |` ( X X. Y ) ) : ( X X. Y ) -onto-> Y <-> ( 2nd |` ( X X. Y ) ) : U. ( R tX S ) -onto-> Y ) ) | 
						
							| 24 | 21 23 | mpbid |  |-  ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( 2nd |` ( X X. Y ) ) : U. ( R tX S ) -onto-> Y ) | 
						
							| 25 |  | tx2cn |  |-  ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( 2nd |` ( X X. Y ) ) e. ( ( R tX S ) Cn S ) ) | 
						
							| 26 | 12 13 25 | syl2anb |  |-  ( ( R e. Top /\ S e. Top ) -> ( 2nd |` ( X X. Y ) ) e. ( ( R tX S ) Cn S ) ) | 
						
							| 27 | 26 | ad2antrr |  |-  ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( 2nd |` ( X X. Y ) ) e. ( ( R tX S ) Cn S ) ) | 
						
							| 28 | 2 | cncmp |  |-  ( ( ( R tX S ) e. Comp /\ ( 2nd |` ( X X. Y ) ) : U. ( R tX S ) -onto-> Y /\ ( 2nd |` ( X X. Y ) ) e. ( ( R tX S ) Cn S ) ) -> S e. Comp ) | 
						
							| 29 | 3 24 27 28 | syl3anc |  |-  ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> S e. Comp ) | 
						
							| 30 | 18 29 | jca |  |-  ( ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) /\ ( R tX S ) e. Comp ) -> ( R e. Comp /\ S e. Comp ) ) | 
						
							| 31 | 30 | ex |  |-  ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( ( R tX S ) e. Comp -> ( R e. Comp /\ S e. Comp ) ) ) | 
						
							| 32 |  | txcmp |  |-  ( ( R e. Comp /\ S e. Comp ) -> ( R tX S ) e. Comp ) | 
						
							| 33 | 31 32 | impbid1 |  |-  ( ( ( R e. Top /\ S e. Top ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( ( R tX S ) e. Comp <-> ( R e. Comp /\ S e. Comp ) ) ) |