| Step | Hyp | Ref | Expression | 
						
							| 1 |  | txcn.1 |  |-  X = U. R | 
						
							| 2 |  | txcn.2 |  |-  Y = U. S | 
						
							| 3 |  | txcn.3 |  |-  Z = ( X X. Y ) | 
						
							| 4 |  | txcn.4 |  |-  W = U. U | 
						
							| 5 |  | txcn.5 |  |-  P = ( 1st |` Z ) | 
						
							| 6 |  | txcn.6 |  |-  Q = ( 2nd |` Z ) | 
						
							| 7 | 1 | toptopon |  |-  ( R e. Top <-> R e. ( TopOn ` X ) ) | 
						
							| 8 | 2 | toptopon |  |-  ( S e. Top <-> S e. ( TopOn ` Y ) ) | 
						
							| 9 | 3 | reseq2i |  |-  ( 1st |` Z ) = ( 1st |` ( X X. Y ) ) | 
						
							| 10 | 5 9 | eqtri |  |-  P = ( 1st |` ( X X. Y ) ) | 
						
							| 11 |  | tx1cn |  |-  ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( 1st |` ( X X. Y ) ) e. ( ( R tX S ) Cn R ) ) | 
						
							| 12 | 10 11 | eqeltrid |  |-  ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> P e. ( ( R tX S ) Cn R ) ) | 
						
							| 13 | 3 | reseq2i |  |-  ( 2nd |` Z ) = ( 2nd |` ( X X. Y ) ) | 
						
							| 14 | 6 13 | eqtri |  |-  Q = ( 2nd |` ( X X. Y ) ) | 
						
							| 15 |  | tx2cn |  |-  ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( 2nd |` ( X X. Y ) ) e. ( ( R tX S ) Cn S ) ) | 
						
							| 16 | 14 15 | eqeltrid |  |-  ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> Q e. ( ( R tX S ) Cn S ) ) | 
						
							| 17 |  | cnco |  |-  ( ( F e. ( U Cn ( R tX S ) ) /\ P e. ( ( R tX S ) Cn R ) ) -> ( P o. F ) e. ( U Cn R ) ) | 
						
							| 18 |  | cnco |  |-  ( ( F e. ( U Cn ( R tX S ) ) /\ Q e. ( ( R tX S ) Cn S ) ) -> ( Q o. F ) e. ( U Cn S ) ) | 
						
							| 19 | 17 18 | anim12dan |  |-  ( ( F e. ( U Cn ( R tX S ) ) /\ ( P e. ( ( R tX S ) Cn R ) /\ Q e. ( ( R tX S ) Cn S ) ) ) -> ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) | 
						
							| 20 | 19 | expcom |  |-  ( ( P e. ( ( R tX S ) Cn R ) /\ Q e. ( ( R tX S ) Cn S ) ) -> ( F e. ( U Cn ( R tX S ) ) -> ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) ) | 
						
							| 21 | 12 16 20 | syl2anc |  |-  ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( F e. ( U Cn ( R tX S ) ) -> ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) ) | 
						
							| 22 | 7 8 21 | syl2anb |  |-  ( ( R e. Top /\ S e. Top ) -> ( F e. ( U Cn ( R tX S ) ) -> ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) ) | 
						
							| 23 | 22 | 3adant3 |  |-  ( ( R e. Top /\ S e. Top /\ F : W --> Z ) -> ( F e. ( U Cn ( R tX S ) ) -> ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) ) | 
						
							| 24 |  | cntop1 |  |-  ( ( P o. F ) e. ( U Cn R ) -> U e. Top ) | 
						
							| 25 | 24 | ad2antrl |  |-  ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) -> U e. Top ) | 
						
							| 26 | 4 | topopn |  |-  ( U e. Top -> W e. U ) | 
						
							| 27 | 25 26 | syl |  |-  ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) -> W e. U ) | 
						
							| 28 | 4 1 | cnf |  |-  ( ( P o. F ) e. ( U Cn R ) -> ( P o. F ) : W --> X ) | 
						
							| 29 | 28 | ad2antrl |  |-  ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) -> ( P o. F ) : W --> X ) | 
						
							| 30 | 4 2 | cnf |  |-  ( ( Q o. F ) e. ( U Cn S ) -> ( Q o. F ) : W --> Y ) | 
						
							| 31 | 30 | ad2antll |  |-  ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) -> ( Q o. F ) : W --> Y ) | 
						
							| 32 | 10 14 | upxp |  |-  ( ( W e. U /\ ( P o. F ) : W --> X /\ ( Q o. F ) : W --> Y ) -> E! h ( h : W --> ( X X. Y ) /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) | 
						
							| 33 |  | feq3 |  |-  ( Z = ( X X. Y ) -> ( h : W --> Z <-> h : W --> ( X X. Y ) ) ) | 
						
							| 34 | 3 33 | ax-mp |  |-  ( h : W --> Z <-> h : W --> ( X X. Y ) ) | 
						
							| 35 | 34 | 3anbi1i |  |-  ( ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) <-> ( h : W --> ( X X. Y ) /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) | 
						
							| 36 | 35 | eubii |  |-  ( E! h ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) <-> E! h ( h : W --> ( X X. Y ) /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) | 
						
							| 37 | 32 36 | sylibr |  |-  ( ( W e. U /\ ( P o. F ) : W --> X /\ ( Q o. F ) : W --> Y ) -> E! h ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) | 
						
							| 38 | 27 29 31 37 | syl3anc |  |-  ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) -> E! h ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) | 
						
							| 39 |  | euex |  |-  ( E! h ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) -> E. h ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) | 
						
							| 40 | 38 39 | syl |  |-  ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) -> E. h ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) | 
						
							| 41 |  | simpll3 |  |-  ( ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) /\ ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) -> F : W --> Z ) | 
						
							| 42 | 27 | adantr |  |-  ( ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) /\ ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) -> W e. U ) | 
						
							| 43 | 41 42 | fexd |  |-  ( ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) /\ ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) -> F e. _V ) | 
						
							| 44 |  | eumo |  |-  ( E! h ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) -> E* h ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) | 
						
							| 45 | 38 44 | syl |  |-  ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) -> E* h ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) /\ ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) -> E* h ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) | 
						
							| 47 |  | simpr |  |-  ( ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) /\ ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) -> ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) | 
						
							| 48 |  | 3anass |  |-  ( ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) <-> ( h : W --> Z /\ ( ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) ) | 
						
							| 49 |  | coeq2 |  |-  ( F = h -> ( P o. F ) = ( P o. h ) ) | 
						
							| 50 |  | coeq2 |  |-  ( F = h -> ( Q o. F ) = ( Q o. h ) ) | 
						
							| 51 | 49 50 | jca |  |-  ( F = h -> ( ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) | 
						
							| 52 | 51 | eqcoms |  |-  ( h = F -> ( ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) | 
						
							| 53 | 52 | biantrud |  |-  ( h = F -> ( h : W --> Z <-> ( h : W --> Z /\ ( ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) ) ) | 
						
							| 54 |  | feq1 |  |-  ( h = F -> ( h : W --> Z <-> F : W --> Z ) ) | 
						
							| 55 | 53 54 | bitr3d |  |-  ( h = F -> ( ( h : W --> Z /\ ( ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) <-> F : W --> Z ) ) | 
						
							| 56 | 48 55 | bitrid |  |-  ( h = F -> ( ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) <-> F : W --> Z ) ) | 
						
							| 57 | 56 | moi2 |  |-  ( ( ( F e. _V /\ E* h ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) /\ ( ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) /\ F : W --> Z ) ) -> h = F ) | 
						
							| 58 | 43 46 47 41 57 | syl22anc |  |-  ( ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) /\ ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) -> h = F ) | 
						
							| 59 |  | eqid |  |-  ( R tX S ) = ( R tX S ) | 
						
							| 60 | 59 1 2 3 5 6 | uptx |  |-  ( ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) -> E! h e. ( U Cn ( R tX S ) ) ( ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) | 
						
							| 61 | 60 | adantl |  |-  ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) -> E! h e. ( U Cn ( R tX S ) ) ( ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) | 
						
							| 62 |  | df-reu |  |-  ( E! h e. ( U Cn ( R tX S ) ) ( ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) <-> E! h ( h e. ( U Cn ( R tX S ) ) /\ ( ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) ) | 
						
							| 63 |  | euex |  |-  ( E! h ( h e. ( U Cn ( R tX S ) ) /\ ( ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) -> E. h ( h e. ( U Cn ( R tX S ) ) /\ ( ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) ) | 
						
							| 64 | 62 63 | sylbi |  |-  ( E! h e. ( U Cn ( R tX S ) ) ( ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) -> E. h ( h e. ( U Cn ( R tX S ) ) /\ ( ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) ) | 
						
							| 65 |  | eqid |  |-  U. ( R tX S ) = U. ( R tX S ) | 
						
							| 66 | 4 65 | cnf |  |-  ( h e. ( U Cn ( R tX S ) ) -> h : W --> U. ( R tX S ) ) | 
						
							| 67 | 1 2 | txuni |  |-  ( ( R e. Top /\ S e. Top ) -> ( X X. Y ) = U. ( R tX S ) ) | 
						
							| 68 | 3 67 | eqtrid |  |-  ( ( R e. Top /\ S e. Top ) -> Z = U. ( R tX S ) ) | 
						
							| 69 | 68 | 3adant3 |  |-  ( ( R e. Top /\ S e. Top /\ F : W --> Z ) -> Z = U. ( R tX S ) ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) -> Z = U. ( R tX S ) ) | 
						
							| 71 | 70 | feq3d |  |-  ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) -> ( h : W --> Z <-> h : W --> U. ( R tX S ) ) ) | 
						
							| 72 | 66 71 | imbitrrid |  |-  ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) -> ( h e. ( U Cn ( R tX S ) ) -> h : W --> Z ) ) | 
						
							| 73 | 72 | anim1d |  |-  ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) -> ( ( h e. ( U Cn ( R tX S ) ) /\ ( ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) -> ( h : W --> Z /\ ( ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) ) ) | 
						
							| 74 | 73 48 | imbitrrdi |  |-  ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) -> ( ( h e. ( U Cn ( R tX S ) ) /\ ( ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) -> ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) ) | 
						
							| 75 |  | simpl |  |-  ( ( h e. ( U Cn ( R tX S ) ) /\ ( ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) -> h e. ( U Cn ( R tX S ) ) ) | 
						
							| 76 | 74 75 | jca2 |  |-  ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) -> ( ( h e. ( U Cn ( R tX S ) ) /\ ( ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) -> ( ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) /\ h e. ( U Cn ( R tX S ) ) ) ) ) | 
						
							| 77 | 76 | eximdv |  |-  ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) -> ( E. h ( h e. ( U Cn ( R tX S ) ) /\ ( ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) -> E. h ( ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) /\ h e. ( U Cn ( R tX S ) ) ) ) ) | 
						
							| 78 | 64 77 | syl5 |  |-  ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) -> ( E! h e. ( U Cn ( R tX S ) ) ( ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) -> E. h ( ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) /\ h e. ( U Cn ( R tX S ) ) ) ) ) | 
						
							| 79 | 61 78 | mpd |  |-  ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) -> E. h ( ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) /\ h e. ( U Cn ( R tX S ) ) ) ) | 
						
							| 80 |  | eupick |  |-  ( ( E! h ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) /\ E. h ( ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) /\ h e. ( U Cn ( R tX S ) ) ) ) -> ( ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) -> h e. ( U Cn ( R tX S ) ) ) ) | 
						
							| 81 | 38 79 80 | syl2anc |  |-  ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) -> ( ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) -> h e. ( U Cn ( R tX S ) ) ) ) | 
						
							| 82 | 81 | imp |  |-  ( ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) /\ ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) -> h e. ( U Cn ( R tX S ) ) ) | 
						
							| 83 | 58 82 | eqeltrrd |  |-  ( ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) /\ ( h : W --> Z /\ ( P o. F ) = ( P o. h ) /\ ( Q o. F ) = ( Q o. h ) ) ) -> F e. ( U Cn ( R tX S ) ) ) | 
						
							| 84 | 40 83 | exlimddv |  |-  ( ( ( R e. Top /\ S e. Top /\ F : W --> Z ) /\ ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) -> F e. ( U Cn ( R tX S ) ) ) | 
						
							| 85 | 84 | ex |  |-  ( ( R e. Top /\ S e. Top /\ F : W --> Z ) -> ( ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) -> F e. ( U Cn ( R tX S ) ) ) ) | 
						
							| 86 | 23 85 | impbid |  |-  ( ( R e. Top /\ S e. Top /\ F : W --> Z ) -> ( F e. ( U Cn ( R tX S ) ) <-> ( ( P o. F ) e. ( U Cn R ) /\ ( Q o. F ) e. ( U Cn S ) ) ) ) |