Step |
Hyp |
Ref |
Expression |
1 |
|
txhmeo.1 |
|- X = U. J |
2 |
|
txhmeo.2 |
|- Y = U. K |
3 |
|
txhmeo.3 |
|- ( ph -> F e. ( J Homeo L ) ) |
4 |
|
txhmeo.4 |
|- ( ph -> G e. ( K Homeo M ) ) |
5 |
|
hmeocn |
|- ( F e. ( J Homeo L ) -> F e. ( J Cn L ) ) |
6 |
3 5
|
syl |
|- ( ph -> F e. ( J Cn L ) ) |
7 |
|
cntop1 |
|- ( F e. ( J Cn L ) -> J e. Top ) |
8 |
6 7
|
syl |
|- ( ph -> J e. Top ) |
9 |
1
|
toptopon |
|- ( J e. Top <-> J e. ( TopOn ` X ) ) |
10 |
8 9
|
sylib |
|- ( ph -> J e. ( TopOn ` X ) ) |
11 |
|
hmeocn |
|- ( G e. ( K Homeo M ) -> G e. ( K Cn M ) ) |
12 |
4 11
|
syl |
|- ( ph -> G e. ( K Cn M ) ) |
13 |
|
cntop1 |
|- ( G e. ( K Cn M ) -> K e. Top ) |
14 |
12 13
|
syl |
|- ( ph -> K e. Top ) |
15 |
2
|
toptopon |
|- ( K e. Top <-> K e. ( TopOn ` Y ) ) |
16 |
14 15
|
sylib |
|- ( ph -> K e. ( TopOn ` Y ) ) |
17 |
10 16
|
cnmpt1st |
|- ( ph -> ( x e. X , y e. Y |-> x ) e. ( ( J tX K ) Cn J ) ) |
18 |
10 16 17 6
|
cnmpt21f |
|- ( ph -> ( x e. X , y e. Y |-> ( F ` x ) ) e. ( ( J tX K ) Cn L ) ) |
19 |
10 16
|
cnmpt2nd |
|- ( ph -> ( x e. X , y e. Y |-> y ) e. ( ( J tX K ) Cn K ) ) |
20 |
10 16 19 12
|
cnmpt21f |
|- ( ph -> ( x e. X , y e. Y |-> ( G ` y ) ) e. ( ( J tX K ) Cn M ) ) |
21 |
10 16 18 20
|
cnmpt2t |
|- ( ph -> ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) e. ( ( J tX K ) Cn ( L tX M ) ) ) |
22 |
|
vex |
|- x e. _V |
23 |
|
vex |
|- y e. _V |
24 |
22 23
|
op1std |
|- ( u = <. x , y >. -> ( 1st ` u ) = x ) |
25 |
24
|
fveq2d |
|- ( u = <. x , y >. -> ( F ` ( 1st ` u ) ) = ( F ` x ) ) |
26 |
22 23
|
op2ndd |
|- ( u = <. x , y >. -> ( 2nd ` u ) = y ) |
27 |
26
|
fveq2d |
|- ( u = <. x , y >. -> ( G ` ( 2nd ` u ) ) = ( G ` y ) ) |
28 |
25 27
|
opeq12d |
|- ( u = <. x , y >. -> <. ( F ` ( 1st ` u ) ) , ( G ` ( 2nd ` u ) ) >. = <. ( F ` x ) , ( G ` y ) >. ) |
29 |
28
|
mpompt |
|- ( u e. ( X X. Y ) |-> <. ( F ` ( 1st ` u ) ) , ( G ` ( 2nd ` u ) ) >. ) = ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) |
30 |
29
|
eqcomi |
|- ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) = ( u e. ( X X. Y ) |-> <. ( F ` ( 1st ` u ) ) , ( G ` ( 2nd ` u ) ) >. ) |
31 |
|
eqid |
|- U. L = U. L |
32 |
1 31
|
cnf |
|- ( F e. ( J Cn L ) -> F : X --> U. L ) |
33 |
6 32
|
syl |
|- ( ph -> F : X --> U. L ) |
34 |
|
xp1st |
|- ( u e. ( X X. Y ) -> ( 1st ` u ) e. X ) |
35 |
|
ffvelrn |
|- ( ( F : X --> U. L /\ ( 1st ` u ) e. X ) -> ( F ` ( 1st ` u ) ) e. U. L ) |
36 |
33 34 35
|
syl2an |
|- ( ( ph /\ u e. ( X X. Y ) ) -> ( F ` ( 1st ` u ) ) e. U. L ) |
37 |
|
eqid |
|- U. M = U. M |
38 |
2 37
|
cnf |
|- ( G e. ( K Cn M ) -> G : Y --> U. M ) |
39 |
12 38
|
syl |
|- ( ph -> G : Y --> U. M ) |
40 |
|
xp2nd |
|- ( u e. ( X X. Y ) -> ( 2nd ` u ) e. Y ) |
41 |
|
ffvelrn |
|- ( ( G : Y --> U. M /\ ( 2nd ` u ) e. Y ) -> ( G ` ( 2nd ` u ) ) e. U. M ) |
42 |
39 40 41
|
syl2an |
|- ( ( ph /\ u e. ( X X. Y ) ) -> ( G ` ( 2nd ` u ) ) e. U. M ) |
43 |
36 42
|
opelxpd |
|- ( ( ph /\ u e. ( X X. Y ) ) -> <. ( F ` ( 1st ` u ) ) , ( G ` ( 2nd ` u ) ) >. e. ( U. L X. U. M ) ) |
44 |
1 31
|
hmeof1o |
|- ( F e. ( J Homeo L ) -> F : X -1-1-onto-> U. L ) |
45 |
3 44
|
syl |
|- ( ph -> F : X -1-1-onto-> U. L ) |
46 |
|
f1ocnv |
|- ( F : X -1-1-onto-> U. L -> `' F : U. L -1-1-onto-> X ) |
47 |
|
f1of |
|- ( `' F : U. L -1-1-onto-> X -> `' F : U. L --> X ) |
48 |
45 46 47
|
3syl |
|- ( ph -> `' F : U. L --> X ) |
49 |
|
xp1st |
|- ( v e. ( U. L X. U. M ) -> ( 1st ` v ) e. U. L ) |
50 |
|
ffvelrn |
|- ( ( `' F : U. L --> X /\ ( 1st ` v ) e. U. L ) -> ( `' F ` ( 1st ` v ) ) e. X ) |
51 |
48 49 50
|
syl2an |
|- ( ( ph /\ v e. ( U. L X. U. M ) ) -> ( `' F ` ( 1st ` v ) ) e. X ) |
52 |
2 37
|
hmeof1o |
|- ( G e. ( K Homeo M ) -> G : Y -1-1-onto-> U. M ) |
53 |
4 52
|
syl |
|- ( ph -> G : Y -1-1-onto-> U. M ) |
54 |
|
f1ocnv |
|- ( G : Y -1-1-onto-> U. M -> `' G : U. M -1-1-onto-> Y ) |
55 |
|
f1of |
|- ( `' G : U. M -1-1-onto-> Y -> `' G : U. M --> Y ) |
56 |
53 54 55
|
3syl |
|- ( ph -> `' G : U. M --> Y ) |
57 |
|
xp2nd |
|- ( v e. ( U. L X. U. M ) -> ( 2nd ` v ) e. U. M ) |
58 |
|
ffvelrn |
|- ( ( `' G : U. M --> Y /\ ( 2nd ` v ) e. U. M ) -> ( `' G ` ( 2nd ` v ) ) e. Y ) |
59 |
56 57 58
|
syl2an |
|- ( ( ph /\ v e. ( U. L X. U. M ) ) -> ( `' G ` ( 2nd ` v ) ) e. Y ) |
60 |
51 59
|
opelxpd |
|- ( ( ph /\ v e. ( U. L X. U. M ) ) -> <. ( `' F ` ( 1st ` v ) ) , ( `' G ` ( 2nd ` v ) ) >. e. ( X X. Y ) ) |
61 |
45
|
adantr |
|- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> F : X -1-1-onto-> U. L ) |
62 |
34
|
ad2antrl |
|- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( 1st ` u ) e. X ) |
63 |
49
|
ad2antll |
|- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( 1st ` v ) e. U. L ) |
64 |
|
f1ocnvfvb |
|- ( ( F : X -1-1-onto-> U. L /\ ( 1st ` u ) e. X /\ ( 1st ` v ) e. U. L ) -> ( ( F ` ( 1st ` u ) ) = ( 1st ` v ) <-> ( `' F ` ( 1st ` v ) ) = ( 1st ` u ) ) ) |
65 |
61 62 63 64
|
syl3anc |
|- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( ( F ` ( 1st ` u ) ) = ( 1st ` v ) <-> ( `' F ` ( 1st ` v ) ) = ( 1st ` u ) ) ) |
66 |
|
eqcom |
|- ( ( 1st ` v ) = ( F ` ( 1st ` u ) ) <-> ( F ` ( 1st ` u ) ) = ( 1st ` v ) ) |
67 |
|
eqcom |
|- ( ( 1st ` u ) = ( `' F ` ( 1st ` v ) ) <-> ( `' F ` ( 1st ` v ) ) = ( 1st ` u ) ) |
68 |
65 66 67
|
3bitr4g |
|- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( ( 1st ` v ) = ( F ` ( 1st ` u ) ) <-> ( 1st ` u ) = ( `' F ` ( 1st ` v ) ) ) ) |
69 |
53
|
adantr |
|- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> G : Y -1-1-onto-> U. M ) |
70 |
40
|
ad2antrl |
|- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( 2nd ` u ) e. Y ) |
71 |
57
|
ad2antll |
|- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( 2nd ` v ) e. U. M ) |
72 |
|
f1ocnvfvb |
|- ( ( G : Y -1-1-onto-> U. M /\ ( 2nd ` u ) e. Y /\ ( 2nd ` v ) e. U. M ) -> ( ( G ` ( 2nd ` u ) ) = ( 2nd ` v ) <-> ( `' G ` ( 2nd ` v ) ) = ( 2nd ` u ) ) ) |
73 |
69 70 71 72
|
syl3anc |
|- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( ( G ` ( 2nd ` u ) ) = ( 2nd ` v ) <-> ( `' G ` ( 2nd ` v ) ) = ( 2nd ` u ) ) ) |
74 |
|
eqcom |
|- ( ( 2nd ` v ) = ( G ` ( 2nd ` u ) ) <-> ( G ` ( 2nd ` u ) ) = ( 2nd ` v ) ) |
75 |
|
eqcom |
|- ( ( 2nd ` u ) = ( `' G ` ( 2nd ` v ) ) <-> ( `' G ` ( 2nd ` v ) ) = ( 2nd ` u ) ) |
76 |
73 74 75
|
3bitr4g |
|- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( ( 2nd ` v ) = ( G ` ( 2nd ` u ) ) <-> ( 2nd ` u ) = ( `' G ` ( 2nd ` v ) ) ) ) |
77 |
68 76
|
anbi12d |
|- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( ( ( 1st ` v ) = ( F ` ( 1st ` u ) ) /\ ( 2nd ` v ) = ( G ` ( 2nd ` u ) ) ) <-> ( ( 1st ` u ) = ( `' F ` ( 1st ` v ) ) /\ ( 2nd ` u ) = ( `' G ` ( 2nd ` v ) ) ) ) ) |
78 |
|
eqop |
|- ( v e. ( U. L X. U. M ) -> ( v = <. ( F ` ( 1st ` u ) ) , ( G ` ( 2nd ` u ) ) >. <-> ( ( 1st ` v ) = ( F ` ( 1st ` u ) ) /\ ( 2nd ` v ) = ( G ` ( 2nd ` u ) ) ) ) ) |
79 |
78
|
ad2antll |
|- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( v = <. ( F ` ( 1st ` u ) ) , ( G ` ( 2nd ` u ) ) >. <-> ( ( 1st ` v ) = ( F ` ( 1st ` u ) ) /\ ( 2nd ` v ) = ( G ` ( 2nd ` u ) ) ) ) ) |
80 |
|
eqop |
|- ( u e. ( X X. Y ) -> ( u = <. ( `' F ` ( 1st ` v ) ) , ( `' G ` ( 2nd ` v ) ) >. <-> ( ( 1st ` u ) = ( `' F ` ( 1st ` v ) ) /\ ( 2nd ` u ) = ( `' G ` ( 2nd ` v ) ) ) ) ) |
81 |
80
|
ad2antrl |
|- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( u = <. ( `' F ` ( 1st ` v ) ) , ( `' G ` ( 2nd ` v ) ) >. <-> ( ( 1st ` u ) = ( `' F ` ( 1st ` v ) ) /\ ( 2nd ` u ) = ( `' G ` ( 2nd ` v ) ) ) ) ) |
82 |
77 79 81
|
3bitr4rd |
|- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( u = <. ( `' F ` ( 1st ` v ) ) , ( `' G ` ( 2nd ` v ) ) >. <-> v = <. ( F ` ( 1st ` u ) ) , ( G ` ( 2nd ` u ) ) >. ) ) |
83 |
30 43 60 82
|
f1ocnv2d |
|- ( ph -> ( ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) : ( X X. Y ) -1-1-onto-> ( U. L X. U. M ) /\ `' ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) = ( v e. ( U. L X. U. M ) |-> <. ( `' F ` ( 1st ` v ) ) , ( `' G ` ( 2nd ` v ) ) >. ) ) ) |
84 |
83
|
simprd |
|- ( ph -> `' ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) = ( v e. ( U. L X. U. M ) |-> <. ( `' F ` ( 1st ` v ) ) , ( `' G ` ( 2nd ` v ) ) >. ) ) |
85 |
|
vex |
|- z e. _V |
86 |
|
vex |
|- w e. _V |
87 |
85 86
|
op1std |
|- ( v = <. z , w >. -> ( 1st ` v ) = z ) |
88 |
87
|
fveq2d |
|- ( v = <. z , w >. -> ( `' F ` ( 1st ` v ) ) = ( `' F ` z ) ) |
89 |
85 86
|
op2ndd |
|- ( v = <. z , w >. -> ( 2nd ` v ) = w ) |
90 |
89
|
fveq2d |
|- ( v = <. z , w >. -> ( `' G ` ( 2nd ` v ) ) = ( `' G ` w ) ) |
91 |
88 90
|
opeq12d |
|- ( v = <. z , w >. -> <. ( `' F ` ( 1st ` v ) ) , ( `' G ` ( 2nd ` v ) ) >. = <. ( `' F ` z ) , ( `' G ` w ) >. ) |
92 |
91
|
mpompt |
|- ( v e. ( U. L X. U. M ) |-> <. ( `' F ` ( 1st ` v ) ) , ( `' G ` ( 2nd ` v ) ) >. ) = ( z e. U. L , w e. U. M |-> <. ( `' F ` z ) , ( `' G ` w ) >. ) |
93 |
84 92
|
eqtrdi |
|- ( ph -> `' ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) = ( z e. U. L , w e. U. M |-> <. ( `' F ` z ) , ( `' G ` w ) >. ) ) |
94 |
|
cntop2 |
|- ( F e. ( J Cn L ) -> L e. Top ) |
95 |
6 94
|
syl |
|- ( ph -> L e. Top ) |
96 |
31
|
toptopon |
|- ( L e. Top <-> L e. ( TopOn ` U. L ) ) |
97 |
95 96
|
sylib |
|- ( ph -> L e. ( TopOn ` U. L ) ) |
98 |
|
cntop2 |
|- ( G e. ( K Cn M ) -> M e. Top ) |
99 |
12 98
|
syl |
|- ( ph -> M e. Top ) |
100 |
37
|
toptopon |
|- ( M e. Top <-> M e. ( TopOn ` U. M ) ) |
101 |
99 100
|
sylib |
|- ( ph -> M e. ( TopOn ` U. M ) ) |
102 |
97 101
|
cnmpt1st |
|- ( ph -> ( z e. U. L , w e. U. M |-> z ) e. ( ( L tX M ) Cn L ) ) |
103 |
|
hmeocnvcn |
|- ( F e. ( J Homeo L ) -> `' F e. ( L Cn J ) ) |
104 |
3 103
|
syl |
|- ( ph -> `' F e. ( L Cn J ) ) |
105 |
97 101 102 104
|
cnmpt21f |
|- ( ph -> ( z e. U. L , w e. U. M |-> ( `' F ` z ) ) e. ( ( L tX M ) Cn J ) ) |
106 |
97 101
|
cnmpt2nd |
|- ( ph -> ( z e. U. L , w e. U. M |-> w ) e. ( ( L tX M ) Cn M ) ) |
107 |
|
hmeocnvcn |
|- ( G e. ( K Homeo M ) -> `' G e. ( M Cn K ) ) |
108 |
4 107
|
syl |
|- ( ph -> `' G e. ( M Cn K ) ) |
109 |
97 101 106 108
|
cnmpt21f |
|- ( ph -> ( z e. U. L , w e. U. M |-> ( `' G ` w ) ) e. ( ( L tX M ) Cn K ) ) |
110 |
97 101 105 109
|
cnmpt2t |
|- ( ph -> ( z e. U. L , w e. U. M |-> <. ( `' F ` z ) , ( `' G ` w ) >. ) e. ( ( L tX M ) Cn ( J tX K ) ) ) |
111 |
93 110
|
eqeltrd |
|- ( ph -> `' ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) e. ( ( L tX M ) Cn ( J tX K ) ) ) |
112 |
|
ishmeo |
|- ( ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) e. ( ( J tX K ) Homeo ( L tX M ) ) <-> ( ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) e. ( ( J tX K ) Cn ( L tX M ) ) /\ `' ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) e. ( ( L tX M ) Cn ( J tX K ) ) ) ) |
113 |
21 111 112
|
sylanbrc |
|- ( ph -> ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) e. ( ( J tX K ) Homeo ( L tX M ) ) ) |