Step |
Hyp |
Ref |
Expression |
1 |
|
0xp |
|- ( (/) X. ( _I ` B ) ) = (/) |
2 |
|
fvprc |
|- ( -. A e. _V -> ( _I ` A ) = (/) ) |
3 |
2
|
xpeq1d |
|- ( -. A e. _V -> ( ( _I ` A ) X. ( _I ` B ) ) = ( (/) X. ( _I ` B ) ) ) |
4 |
|
simpr |
|- ( ( -. A e. _V /\ B = (/) ) -> B = (/) ) |
5 |
4
|
xpeq2d |
|- ( ( -. A e. _V /\ B = (/) ) -> ( A X. B ) = ( A X. (/) ) ) |
6 |
|
xp0 |
|- ( A X. (/) ) = (/) |
7 |
5 6
|
eqtrdi |
|- ( ( -. A e. _V /\ B = (/) ) -> ( A X. B ) = (/) ) |
8 |
7
|
fveq2d |
|- ( ( -. A e. _V /\ B = (/) ) -> ( _I ` ( A X. B ) ) = ( _I ` (/) ) ) |
9 |
|
0ex |
|- (/) e. _V |
10 |
|
fvi |
|- ( (/) e. _V -> ( _I ` (/) ) = (/) ) |
11 |
9 10
|
ax-mp |
|- ( _I ` (/) ) = (/) |
12 |
8 11
|
eqtrdi |
|- ( ( -. A e. _V /\ B = (/) ) -> ( _I ` ( A X. B ) ) = (/) ) |
13 |
|
dmexg |
|- ( ( A X. B ) e. _V -> dom ( A X. B ) e. _V ) |
14 |
|
dmxp |
|- ( B =/= (/) -> dom ( A X. B ) = A ) |
15 |
14
|
eleq1d |
|- ( B =/= (/) -> ( dom ( A X. B ) e. _V <-> A e. _V ) ) |
16 |
13 15
|
syl5ib |
|- ( B =/= (/) -> ( ( A X. B ) e. _V -> A e. _V ) ) |
17 |
16
|
con3d |
|- ( B =/= (/) -> ( -. A e. _V -> -. ( A X. B ) e. _V ) ) |
18 |
17
|
impcom |
|- ( ( -. A e. _V /\ B =/= (/) ) -> -. ( A X. B ) e. _V ) |
19 |
|
fvprc |
|- ( -. ( A X. B ) e. _V -> ( _I ` ( A X. B ) ) = (/) ) |
20 |
18 19
|
syl |
|- ( ( -. A e. _V /\ B =/= (/) ) -> ( _I ` ( A X. B ) ) = (/) ) |
21 |
12 20
|
pm2.61dane |
|- ( -. A e. _V -> ( _I ` ( A X. B ) ) = (/) ) |
22 |
1 3 21
|
3eqtr4a |
|- ( -. A e. _V -> ( ( _I ` A ) X. ( _I ` B ) ) = ( _I ` ( A X. B ) ) ) |
23 |
|
xp0 |
|- ( ( _I ` A ) X. (/) ) = (/) |
24 |
|
fvprc |
|- ( -. B e. _V -> ( _I ` B ) = (/) ) |
25 |
24
|
xpeq2d |
|- ( -. B e. _V -> ( ( _I ` A ) X. ( _I ` B ) ) = ( ( _I ` A ) X. (/) ) ) |
26 |
|
simpr |
|- ( ( -. B e. _V /\ A = (/) ) -> A = (/) ) |
27 |
26
|
xpeq1d |
|- ( ( -. B e. _V /\ A = (/) ) -> ( A X. B ) = ( (/) X. B ) ) |
28 |
|
0xp |
|- ( (/) X. B ) = (/) |
29 |
27 28
|
eqtrdi |
|- ( ( -. B e. _V /\ A = (/) ) -> ( A X. B ) = (/) ) |
30 |
29
|
fveq2d |
|- ( ( -. B e. _V /\ A = (/) ) -> ( _I ` ( A X. B ) ) = ( _I ` (/) ) ) |
31 |
30 11
|
eqtrdi |
|- ( ( -. B e. _V /\ A = (/) ) -> ( _I ` ( A X. B ) ) = (/) ) |
32 |
|
rnexg |
|- ( ( A X. B ) e. _V -> ran ( A X. B ) e. _V ) |
33 |
|
rnxp |
|- ( A =/= (/) -> ran ( A X. B ) = B ) |
34 |
33
|
eleq1d |
|- ( A =/= (/) -> ( ran ( A X. B ) e. _V <-> B e. _V ) ) |
35 |
32 34
|
syl5ib |
|- ( A =/= (/) -> ( ( A X. B ) e. _V -> B e. _V ) ) |
36 |
35
|
con3d |
|- ( A =/= (/) -> ( -. B e. _V -> -. ( A X. B ) e. _V ) ) |
37 |
36
|
impcom |
|- ( ( -. B e. _V /\ A =/= (/) ) -> -. ( A X. B ) e. _V ) |
38 |
37 19
|
syl |
|- ( ( -. B e. _V /\ A =/= (/) ) -> ( _I ` ( A X. B ) ) = (/) ) |
39 |
31 38
|
pm2.61dane |
|- ( -. B e. _V -> ( _I ` ( A X. B ) ) = (/) ) |
40 |
23 25 39
|
3eqtr4a |
|- ( -. B e. _V -> ( ( _I ` A ) X. ( _I ` B ) ) = ( _I ` ( A X. B ) ) ) |
41 |
|
fvi |
|- ( A e. _V -> ( _I ` A ) = A ) |
42 |
|
fvi |
|- ( B e. _V -> ( _I ` B ) = B ) |
43 |
|
xpeq12 |
|- ( ( ( _I ` A ) = A /\ ( _I ` B ) = B ) -> ( ( _I ` A ) X. ( _I ` B ) ) = ( A X. B ) ) |
44 |
41 42 43
|
syl2an |
|- ( ( A e. _V /\ B e. _V ) -> ( ( _I ` A ) X. ( _I ` B ) ) = ( A X. B ) ) |
45 |
|
xpexg |
|- ( ( A e. _V /\ B e. _V ) -> ( A X. B ) e. _V ) |
46 |
|
fvi |
|- ( ( A X. B ) e. _V -> ( _I ` ( A X. B ) ) = ( A X. B ) ) |
47 |
45 46
|
syl |
|- ( ( A e. _V /\ B e. _V ) -> ( _I ` ( A X. B ) ) = ( A X. B ) ) |
48 |
44 47
|
eqtr4d |
|- ( ( A e. _V /\ B e. _V ) -> ( ( _I ` A ) X. ( _I ` B ) ) = ( _I ` ( A X. B ) ) ) |
49 |
22 40 48
|
ecase |
|- ( ( _I ` A ) X. ( _I ` B ) ) = ( _I ` ( A X. B ) ) |