| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0xp |  |-  ( (/) X. ( _I ` B ) ) = (/) | 
						
							| 2 |  | fvprc |  |-  ( -. A e. _V -> ( _I ` A ) = (/) ) | 
						
							| 3 | 2 | xpeq1d |  |-  ( -. A e. _V -> ( ( _I ` A ) X. ( _I ` B ) ) = ( (/) X. ( _I ` B ) ) ) | 
						
							| 4 |  | simpr |  |-  ( ( -. A e. _V /\ B = (/) ) -> B = (/) ) | 
						
							| 5 | 4 | xpeq2d |  |-  ( ( -. A e. _V /\ B = (/) ) -> ( A X. B ) = ( A X. (/) ) ) | 
						
							| 6 |  | xp0 |  |-  ( A X. (/) ) = (/) | 
						
							| 7 | 5 6 | eqtrdi |  |-  ( ( -. A e. _V /\ B = (/) ) -> ( A X. B ) = (/) ) | 
						
							| 8 | 7 | fveq2d |  |-  ( ( -. A e. _V /\ B = (/) ) -> ( _I ` ( A X. B ) ) = ( _I ` (/) ) ) | 
						
							| 9 |  | 0ex |  |-  (/) e. _V | 
						
							| 10 |  | fvi |  |-  ( (/) e. _V -> ( _I ` (/) ) = (/) ) | 
						
							| 11 | 9 10 | ax-mp |  |-  ( _I ` (/) ) = (/) | 
						
							| 12 | 8 11 | eqtrdi |  |-  ( ( -. A e. _V /\ B = (/) ) -> ( _I ` ( A X. B ) ) = (/) ) | 
						
							| 13 |  | dmexg |  |-  ( ( A X. B ) e. _V -> dom ( A X. B ) e. _V ) | 
						
							| 14 |  | dmxp |  |-  ( B =/= (/) -> dom ( A X. B ) = A ) | 
						
							| 15 | 14 | eleq1d |  |-  ( B =/= (/) -> ( dom ( A X. B ) e. _V <-> A e. _V ) ) | 
						
							| 16 | 13 15 | imbitrid |  |-  ( B =/= (/) -> ( ( A X. B ) e. _V -> A e. _V ) ) | 
						
							| 17 | 16 | con3d |  |-  ( B =/= (/) -> ( -. A e. _V -> -. ( A X. B ) e. _V ) ) | 
						
							| 18 | 17 | impcom |  |-  ( ( -. A e. _V /\ B =/= (/) ) -> -. ( A X. B ) e. _V ) | 
						
							| 19 |  | fvprc |  |-  ( -. ( A X. B ) e. _V -> ( _I ` ( A X. B ) ) = (/) ) | 
						
							| 20 | 18 19 | syl |  |-  ( ( -. A e. _V /\ B =/= (/) ) -> ( _I ` ( A X. B ) ) = (/) ) | 
						
							| 21 | 12 20 | pm2.61dane |  |-  ( -. A e. _V -> ( _I ` ( A X. B ) ) = (/) ) | 
						
							| 22 | 1 3 21 | 3eqtr4a |  |-  ( -. A e. _V -> ( ( _I ` A ) X. ( _I ` B ) ) = ( _I ` ( A X. B ) ) ) | 
						
							| 23 |  | xp0 |  |-  ( ( _I ` A ) X. (/) ) = (/) | 
						
							| 24 |  | fvprc |  |-  ( -. B e. _V -> ( _I ` B ) = (/) ) | 
						
							| 25 | 24 | xpeq2d |  |-  ( -. B e. _V -> ( ( _I ` A ) X. ( _I ` B ) ) = ( ( _I ` A ) X. (/) ) ) | 
						
							| 26 |  | simpr |  |-  ( ( -. B e. _V /\ A = (/) ) -> A = (/) ) | 
						
							| 27 | 26 | xpeq1d |  |-  ( ( -. B e. _V /\ A = (/) ) -> ( A X. B ) = ( (/) X. B ) ) | 
						
							| 28 |  | 0xp |  |-  ( (/) X. B ) = (/) | 
						
							| 29 | 27 28 | eqtrdi |  |-  ( ( -. B e. _V /\ A = (/) ) -> ( A X. B ) = (/) ) | 
						
							| 30 | 29 | fveq2d |  |-  ( ( -. B e. _V /\ A = (/) ) -> ( _I ` ( A X. B ) ) = ( _I ` (/) ) ) | 
						
							| 31 | 30 11 | eqtrdi |  |-  ( ( -. B e. _V /\ A = (/) ) -> ( _I ` ( A X. B ) ) = (/) ) | 
						
							| 32 |  | rnexg |  |-  ( ( A X. B ) e. _V -> ran ( A X. B ) e. _V ) | 
						
							| 33 |  | rnxp |  |-  ( A =/= (/) -> ran ( A X. B ) = B ) | 
						
							| 34 | 33 | eleq1d |  |-  ( A =/= (/) -> ( ran ( A X. B ) e. _V <-> B e. _V ) ) | 
						
							| 35 | 32 34 | imbitrid |  |-  ( A =/= (/) -> ( ( A X. B ) e. _V -> B e. _V ) ) | 
						
							| 36 | 35 | con3d |  |-  ( A =/= (/) -> ( -. B e. _V -> -. ( A X. B ) e. _V ) ) | 
						
							| 37 | 36 | impcom |  |-  ( ( -. B e. _V /\ A =/= (/) ) -> -. ( A X. B ) e. _V ) | 
						
							| 38 | 37 19 | syl |  |-  ( ( -. B e. _V /\ A =/= (/) ) -> ( _I ` ( A X. B ) ) = (/) ) | 
						
							| 39 | 31 38 | pm2.61dane |  |-  ( -. B e. _V -> ( _I ` ( A X. B ) ) = (/) ) | 
						
							| 40 | 23 25 39 | 3eqtr4a |  |-  ( -. B e. _V -> ( ( _I ` A ) X. ( _I ` B ) ) = ( _I ` ( A X. B ) ) ) | 
						
							| 41 |  | fvi |  |-  ( A e. _V -> ( _I ` A ) = A ) | 
						
							| 42 |  | fvi |  |-  ( B e. _V -> ( _I ` B ) = B ) | 
						
							| 43 |  | xpeq12 |  |-  ( ( ( _I ` A ) = A /\ ( _I ` B ) = B ) -> ( ( _I ` A ) X. ( _I ` B ) ) = ( A X. B ) ) | 
						
							| 44 | 41 42 43 | syl2an |  |-  ( ( A e. _V /\ B e. _V ) -> ( ( _I ` A ) X. ( _I ` B ) ) = ( A X. B ) ) | 
						
							| 45 |  | xpexg |  |-  ( ( A e. _V /\ B e. _V ) -> ( A X. B ) e. _V ) | 
						
							| 46 |  | fvi |  |-  ( ( A X. B ) e. _V -> ( _I ` ( A X. B ) ) = ( A X. B ) ) | 
						
							| 47 | 45 46 | syl |  |-  ( ( A e. _V /\ B e. _V ) -> ( _I ` ( A X. B ) ) = ( A X. B ) ) | 
						
							| 48 | 44 47 | eqtr4d |  |-  ( ( A e. _V /\ B e. _V ) -> ( ( _I ` A ) X. ( _I ` B ) ) = ( _I ` ( A X. B ) ) ) | 
						
							| 49 | 22 40 48 | ecase |  |-  ( ( _I ` A ) X. ( _I ` B ) ) = ( _I ` ( A X. B ) ) |