Metamath Proof Explorer


Theorem txtopi

Description: The product of two topologies is a topology. (Contributed by Jeff Madsen, 15-Jun-2010)

Ref Expression
Hypotheses txtopi.1
|- R e. Top
txtopi.2
|- S e. Top
Assertion txtopi
|- ( R tX S ) e. Top

Proof

Step Hyp Ref Expression
1 txtopi.1
 |-  R e. Top
2 txtopi.2
 |-  S e. Top
3 txtop
 |-  ( ( R e. Top /\ S e. Top ) -> ( R tX S ) e. Top )
4 1 2 3 mp2an
 |-  ( R tX S ) e. Top