Metamath Proof Explorer


Theorem txunii

Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010)

Ref Expression
Hypotheses txunii.1
|- R e. Top
txunii.2
|- S e. Top
txunii.3
|- X = U. R
txunii.4
|- Y = U. S
Assertion txunii
|- ( X X. Y ) = U. ( R tX S )

Proof

Step Hyp Ref Expression
1 txunii.1
 |-  R e. Top
2 txunii.2
 |-  S e. Top
3 txunii.3
 |-  X = U. R
4 txunii.4
 |-  Y = U. S
5 3 4 txuni
 |-  ( ( R e. Top /\ S e. Top ) -> ( X X. Y ) = U. ( R tX S ) )
6 1 2 5 mp2an
 |-  ( X X. Y ) = U. ( R tX S )