Metamath Proof Explorer


Theorem tz6.12c

Description: Corollary of Theorem 6.12(1) of TakeutiZaring p. 27. (Contributed by NM, 30-Apr-2004)

Ref Expression
Assertion tz6.12c
|- ( E! y A F y -> ( ( F ` A ) = y <-> A F y ) )

Proof

Step Hyp Ref Expression
1 nfeu1
 |-  F/ y E! y A F y
2 nfv
 |-  F/ y A F ( F ` A )
3 euex
 |-  ( E! y A F y -> E. y A F y )
4 tz6.12-1
 |-  ( ( A F y /\ E! y A F y ) -> ( F ` A ) = y )
5 4 expcom
 |-  ( E! y A F y -> ( A F y -> ( F ` A ) = y ) )
6 breq2
 |-  ( ( F ` A ) = y -> ( A F ( F ` A ) <-> A F y ) )
7 6 biimprd
 |-  ( ( F ` A ) = y -> ( A F y -> A F ( F ` A ) ) )
8 5 7 syli
 |-  ( E! y A F y -> ( A F y -> A F ( F ` A ) ) )
9 1 2 3 8 exlimimdd
 |-  ( E! y A F y -> A F ( F ` A ) )
10 9 6 syl5ibcom
 |-  ( E! y A F y -> ( ( F ` A ) = y -> A F y ) )
11 10 5 impbid
 |-  ( E! y A F y -> ( ( F ` A ) = y <-> A F y ) )