Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
|- ( F ` A ) e. _V |
2 |
|
neeq1 |
|- ( ( F ` A ) = y -> ( ( F ` A ) =/= (/) <-> y =/= (/) ) ) |
3 |
|
tz6.12-2 |
|- ( -. E! y A F y -> ( F ` A ) = (/) ) |
4 |
3
|
necon1ai |
|- ( ( F ` A ) =/= (/) -> E! y A F y ) |
5 |
|
tz6.12c |
|- ( E! y A F y -> ( ( F ` A ) = y <-> A F y ) ) |
6 |
4 5
|
syl |
|- ( ( F ` A ) =/= (/) -> ( ( F ` A ) = y <-> A F y ) ) |
7 |
6
|
biimpcd |
|- ( ( F ` A ) = y -> ( ( F ` A ) =/= (/) -> A F y ) ) |
8 |
2 7
|
sylbird |
|- ( ( F ` A ) = y -> ( y =/= (/) -> A F y ) ) |
9 |
8
|
eqcoms |
|- ( y = ( F ` A ) -> ( y =/= (/) -> A F y ) ) |
10 |
|
neeq1 |
|- ( y = ( F ` A ) -> ( y =/= (/) <-> ( F ` A ) =/= (/) ) ) |
11 |
|
breq2 |
|- ( y = ( F ` A ) -> ( A F y <-> A F ( F ` A ) ) ) |
12 |
9 10 11
|
3imtr3d |
|- ( y = ( F ` A ) -> ( ( F ` A ) =/= (/) -> A F ( F ` A ) ) ) |
13 |
1 12
|
vtocle |
|- ( ( F ` A ) =/= (/) -> A F ( F ` A ) ) |
14 |
13
|
a1i |
|- ( ( F ` A ) = B -> ( ( F ` A ) =/= (/) -> A F ( F ` A ) ) ) |
15 |
|
neeq1 |
|- ( ( F ` A ) = B -> ( ( F ` A ) =/= (/) <-> B =/= (/) ) ) |
16 |
|
breq2 |
|- ( ( F ` A ) = B -> ( A F ( F ` A ) <-> A F B ) ) |
17 |
14 15 16
|
3imtr3d |
|- ( ( F ` A ) = B -> ( B =/= (/) -> A F B ) ) |
18 |
17
|
com12 |
|- ( B =/= (/) -> ( ( F ` A ) = B -> A F B ) ) |