Description: All nonempty subclasses of a class having a well-ordered set-like relation R have R-minimal elements. Proposition 6.26 of TakeutiZaring p. 31. (Contributed by Scott Fenton, 14-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tz6.26i.1 | |- R We A |
|
tz6.26i.2 | |- R Se A |
||
Assertion | tz6.26i | |- ( ( B C_ A /\ B =/= (/) ) -> E. y e. B Pred ( R , B , y ) = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz6.26i.1 | |- R We A |
|
2 | tz6.26i.2 | |- R Se A |
|
3 | tz6.26 | |- ( ( ( R We A /\ R Se A ) /\ ( B C_ A /\ B =/= (/) ) ) -> E. y e. B Pred ( R , B , y ) = (/) ) |
|
4 | 1 2 3 | mpanl12 | |- ( ( B C_ A /\ B =/= (/) ) -> E. y e. B Pred ( R , B , y ) = (/) ) |