Metamath Proof Explorer


Theorem tz6.26i

Description: All nonempty subclasses of a class having a well-ordered set-like relation R have R-minimal elements. Proposition 6.26 of TakeutiZaring p. 31. (Contributed by Scott Fenton, 14-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses tz6.26i.1
|- R We A
tz6.26i.2
|- R Se A
Assertion tz6.26i
|- ( ( B C_ A /\ B =/= (/) ) -> E. y e. B Pred ( R , B , y ) = (/) )

Proof

Step Hyp Ref Expression
1 tz6.26i.1
 |-  R We A
2 tz6.26i.2
 |-  R Se A
3 tz6.26
 |-  ( ( ( R We A /\ R Se A ) /\ ( B C_ A /\ B =/= (/) ) ) -> E. y e. B Pred ( R , B , y ) = (/) )
4 1 2 3 mpanl12
 |-  ( ( B C_ A /\ B =/= (/) ) -> E. y e. B Pred ( R , B , y ) = (/) )