Metamath Proof Explorer


Theorem tz7.2

Description: Similar to Theorem 7.2 of TakeutiZaring p. 35, except that the Axiom of Regularity is not required due to the antecedent _E Fr A . (Contributed by NM, 4-May-1994)

Ref Expression
Assertion tz7.2
|- ( ( Tr A /\ _E Fr A /\ B e. A ) -> ( B C_ A /\ B =/= A ) )

Proof

Step Hyp Ref Expression
1 trss
 |-  ( Tr A -> ( B e. A -> B C_ A ) )
2 efrirr
 |-  ( _E Fr A -> -. A e. A )
3 eleq1
 |-  ( B = A -> ( B e. A <-> A e. A ) )
4 3 notbid
 |-  ( B = A -> ( -. B e. A <-> -. A e. A ) )
5 2 4 syl5ibrcom
 |-  ( _E Fr A -> ( B = A -> -. B e. A ) )
6 5 necon2ad
 |-  ( _E Fr A -> ( B e. A -> B =/= A ) )
7 1 6 anim12ii
 |-  ( ( Tr A /\ _E Fr A ) -> ( B e. A -> ( B C_ A /\ B =/= A ) ) )
8 7 3impia
 |-  ( ( Tr A /\ _E Fr A /\ B e. A ) -> ( B C_ A /\ B =/= A ) )