Step |
Hyp |
Ref |
Expression |
1 |
|
tz7.44.1 |
|- G = ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( H ` ( x ` U. dom x ) ) ) ) ) |
2 |
|
tz7.44.2 |
|- ( y e. X -> ( F ` y ) = ( G ` ( F |` y ) ) ) |
3 |
|
tz7.44.3 |
|- ( y e. X -> ( F |` y ) e. _V ) |
4 |
|
tz7.44.4 |
|- F Fn X |
5 |
|
tz7.44.5 |
|- Ord X |
6 |
|
fveq2 |
|- ( y = suc B -> ( F ` y ) = ( F ` suc B ) ) |
7 |
|
reseq2 |
|- ( y = suc B -> ( F |` y ) = ( F |` suc B ) ) |
8 |
7
|
fveq2d |
|- ( y = suc B -> ( G ` ( F |` y ) ) = ( G ` ( F |` suc B ) ) ) |
9 |
6 8
|
eqeq12d |
|- ( y = suc B -> ( ( F ` y ) = ( G ` ( F |` y ) ) <-> ( F ` suc B ) = ( G ` ( F |` suc B ) ) ) ) |
10 |
9 2
|
vtoclga |
|- ( suc B e. X -> ( F ` suc B ) = ( G ` ( F |` suc B ) ) ) |
11 |
|
eqeq1 |
|- ( x = ( F |` suc B ) -> ( x = (/) <-> ( F |` suc B ) = (/) ) ) |
12 |
|
dmeq |
|- ( x = ( F |` suc B ) -> dom x = dom ( F |` suc B ) ) |
13 |
|
limeq |
|- ( dom x = dom ( F |` suc B ) -> ( Lim dom x <-> Lim dom ( F |` suc B ) ) ) |
14 |
12 13
|
syl |
|- ( x = ( F |` suc B ) -> ( Lim dom x <-> Lim dom ( F |` suc B ) ) ) |
15 |
|
rneq |
|- ( x = ( F |` suc B ) -> ran x = ran ( F |` suc B ) ) |
16 |
15
|
unieqd |
|- ( x = ( F |` suc B ) -> U. ran x = U. ran ( F |` suc B ) ) |
17 |
|
fveq1 |
|- ( x = ( F |` suc B ) -> ( x ` U. dom x ) = ( ( F |` suc B ) ` U. dom x ) ) |
18 |
12
|
unieqd |
|- ( x = ( F |` suc B ) -> U. dom x = U. dom ( F |` suc B ) ) |
19 |
18
|
fveq2d |
|- ( x = ( F |` suc B ) -> ( ( F |` suc B ) ` U. dom x ) = ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) |
20 |
17 19
|
eqtrd |
|- ( x = ( F |` suc B ) -> ( x ` U. dom x ) = ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) |
21 |
20
|
fveq2d |
|- ( x = ( F |` suc B ) -> ( H ` ( x ` U. dom x ) ) = ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) ) |
22 |
14 16 21
|
ifbieq12d |
|- ( x = ( F |` suc B ) -> if ( Lim dom x , U. ran x , ( H ` ( x ` U. dom x ) ) ) = if ( Lim dom ( F |` suc B ) , U. ran ( F |` suc B ) , ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) ) ) |
23 |
11 22
|
ifbieq2d |
|- ( x = ( F |` suc B ) -> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( H ` ( x ` U. dom x ) ) ) ) = if ( ( F |` suc B ) = (/) , A , if ( Lim dom ( F |` suc B ) , U. ran ( F |` suc B ) , ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) ) ) ) |
24 |
7
|
eleq1d |
|- ( y = suc B -> ( ( F |` y ) e. _V <-> ( F |` suc B ) e. _V ) ) |
25 |
24 3
|
vtoclga |
|- ( suc B e. X -> ( F |` suc B ) e. _V ) |
26 |
|
noel |
|- -. B e. (/) |
27 |
|
dmeq |
|- ( ( F |` suc B ) = (/) -> dom ( F |` suc B ) = dom (/) ) |
28 |
|
dm0 |
|- dom (/) = (/) |
29 |
27 28
|
eqtrdi |
|- ( ( F |` suc B ) = (/) -> dom ( F |` suc B ) = (/) ) |
30 |
|
ordsson |
|- ( Ord X -> X C_ On ) |
31 |
5 30
|
ax-mp |
|- X C_ On |
32 |
|
ordtr |
|- ( Ord X -> Tr X ) |
33 |
5 32
|
ax-mp |
|- Tr X |
34 |
|
trsuc |
|- ( ( Tr X /\ suc B e. X ) -> B e. X ) |
35 |
33 34
|
mpan |
|- ( suc B e. X -> B e. X ) |
36 |
31 35
|
sselid |
|- ( suc B e. X -> B e. On ) |
37 |
|
sucidg |
|- ( B e. On -> B e. suc B ) |
38 |
36 37
|
syl |
|- ( suc B e. X -> B e. suc B ) |
39 |
|
dmres |
|- dom ( F |` suc B ) = ( suc B i^i dom F ) |
40 |
|
ordelss |
|- ( ( Ord X /\ suc B e. X ) -> suc B C_ X ) |
41 |
5 40
|
mpan |
|- ( suc B e. X -> suc B C_ X ) |
42 |
4
|
fndmi |
|- dom F = X |
43 |
41 42
|
sseqtrrdi |
|- ( suc B e. X -> suc B C_ dom F ) |
44 |
|
df-ss |
|- ( suc B C_ dom F <-> ( suc B i^i dom F ) = suc B ) |
45 |
43 44
|
sylib |
|- ( suc B e. X -> ( suc B i^i dom F ) = suc B ) |
46 |
39 45
|
eqtrid |
|- ( suc B e. X -> dom ( F |` suc B ) = suc B ) |
47 |
38 46
|
eleqtrrd |
|- ( suc B e. X -> B e. dom ( F |` suc B ) ) |
48 |
|
eleq2 |
|- ( dom ( F |` suc B ) = (/) -> ( B e. dom ( F |` suc B ) <-> B e. (/) ) ) |
49 |
47 48
|
syl5ibcom |
|- ( suc B e. X -> ( dom ( F |` suc B ) = (/) -> B e. (/) ) ) |
50 |
29 49
|
syl5 |
|- ( suc B e. X -> ( ( F |` suc B ) = (/) -> B e. (/) ) ) |
51 |
26 50
|
mtoi |
|- ( suc B e. X -> -. ( F |` suc B ) = (/) ) |
52 |
51
|
iffalsed |
|- ( suc B e. X -> if ( ( F |` suc B ) = (/) , A , if ( Lim dom ( F |` suc B ) , U. ran ( F |` suc B ) , ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) ) ) = if ( Lim dom ( F |` suc B ) , U. ran ( F |` suc B ) , ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) ) ) |
53 |
|
nlimsucg |
|- ( B e. On -> -. Lim suc B ) |
54 |
36 53
|
syl |
|- ( suc B e. X -> -. Lim suc B ) |
55 |
|
limeq |
|- ( dom ( F |` suc B ) = suc B -> ( Lim dom ( F |` suc B ) <-> Lim suc B ) ) |
56 |
46 55
|
syl |
|- ( suc B e. X -> ( Lim dom ( F |` suc B ) <-> Lim suc B ) ) |
57 |
54 56
|
mtbird |
|- ( suc B e. X -> -. Lim dom ( F |` suc B ) ) |
58 |
57
|
iffalsed |
|- ( suc B e. X -> if ( Lim dom ( F |` suc B ) , U. ran ( F |` suc B ) , ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) ) = ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) ) |
59 |
46
|
unieqd |
|- ( suc B e. X -> U. dom ( F |` suc B ) = U. suc B ) |
60 |
|
eloni |
|- ( B e. On -> Ord B ) |
61 |
|
ordunisuc |
|- ( Ord B -> U. suc B = B ) |
62 |
36 60 61
|
3syl |
|- ( suc B e. X -> U. suc B = B ) |
63 |
59 62
|
eqtrd |
|- ( suc B e. X -> U. dom ( F |` suc B ) = B ) |
64 |
63
|
fveq2d |
|- ( suc B e. X -> ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) = ( ( F |` suc B ) ` B ) ) |
65 |
38
|
fvresd |
|- ( suc B e. X -> ( ( F |` suc B ) ` B ) = ( F ` B ) ) |
66 |
64 65
|
eqtrd |
|- ( suc B e. X -> ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) = ( F ` B ) ) |
67 |
66
|
fveq2d |
|- ( suc B e. X -> ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) = ( H ` ( F ` B ) ) ) |
68 |
52 58 67
|
3eqtrd |
|- ( suc B e. X -> if ( ( F |` suc B ) = (/) , A , if ( Lim dom ( F |` suc B ) , U. ran ( F |` suc B ) , ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) ) ) = ( H ` ( F ` B ) ) ) |
69 |
|
fvex |
|- ( H ` ( F ` B ) ) e. _V |
70 |
68 69
|
eqeltrdi |
|- ( suc B e. X -> if ( ( F |` suc B ) = (/) , A , if ( Lim dom ( F |` suc B ) , U. ran ( F |` suc B ) , ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) ) ) e. _V ) |
71 |
1 23 25 70
|
fvmptd3 |
|- ( suc B e. X -> ( G ` ( F |` suc B ) ) = if ( ( F |` suc B ) = (/) , A , if ( Lim dom ( F |` suc B ) , U. ran ( F |` suc B ) , ( H ` ( ( F |` suc B ) ` U. dom ( F |` suc B ) ) ) ) ) ) |
72 |
10 71 68
|
3eqtrd |
|- ( suc B e. X -> ( F ` suc B ) = ( H ` ( F ` B ) ) ) |