Step |
Hyp |
Ref |
Expression |
1 |
|
tz7.44.1 |
|- G = ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( H ` ( x ` U. dom x ) ) ) ) ) |
2 |
|
tz7.44.2 |
|- ( y e. X -> ( F ` y ) = ( G ` ( F |` y ) ) ) |
3 |
|
tz7.44.3 |
|- ( y e. X -> ( F |` y ) e. _V ) |
4 |
|
tz7.44.4 |
|- F Fn X |
5 |
|
tz7.44.5 |
|- Ord X |
6 |
|
fveq2 |
|- ( y = B -> ( F ` y ) = ( F ` B ) ) |
7 |
|
reseq2 |
|- ( y = B -> ( F |` y ) = ( F |` B ) ) |
8 |
7
|
fveq2d |
|- ( y = B -> ( G ` ( F |` y ) ) = ( G ` ( F |` B ) ) ) |
9 |
6 8
|
eqeq12d |
|- ( y = B -> ( ( F ` y ) = ( G ` ( F |` y ) ) <-> ( F ` B ) = ( G ` ( F |` B ) ) ) ) |
10 |
9 2
|
vtoclga |
|- ( B e. X -> ( F ` B ) = ( G ` ( F |` B ) ) ) |
11 |
10
|
adantr |
|- ( ( B e. X /\ Lim B ) -> ( F ` B ) = ( G ` ( F |` B ) ) ) |
12 |
7
|
eleq1d |
|- ( y = B -> ( ( F |` y ) e. _V <-> ( F |` B ) e. _V ) ) |
13 |
12 3
|
vtoclga |
|- ( B e. X -> ( F |` B ) e. _V ) |
14 |
13
|
adantr |
|- ( ( B e. X /\ Lim B ) -> ( F |` B ) e. _V ) |
15 |
|
simpr |
|- ( ( B e. X /\ Lim B ) -> Lim B ) |
16 |
|
nlim0 |
|- -. Lim (/) |
17 |
|
dmres |
|- dom ( F |` B ) = ( B i^i dom F ) |
18 |
|
ordelss |
|- ( ( Ord X /\ B e. X ) -> B C_ X ) |
19 |
5 18
|
mpan |
|- ( B e. X -> B C_ X ) |
20 |
19
|
adantr |
|- ( ( B e. X /\ Lim B ) -> B C_ X ) |
21 |
|
fndm |
|- ( F Fn X -> dom F = X ) |
22 |
4 21
|
ax-mp |
|- dom F = X |
23 |
20 22
|
sseqtrrdi |
|- ( ( B e. X /\ Lim B ) -> B C_ dom F ) |
24 |
|
df-ss |
|- ( B C_ dom F <-> ( B i^i dom F ) = B ) |
25 |
23 24
|
sylib |
|- ( ( B e. X /\ Lim B ) -> ( B i^i dom F ) = B ) |
26 |
17 25
|
eqtrid |
|- ( ( B e. X /\ Lim B ) -> dom ( F |` B ) = B ) |
27 |
|
dmeq |
|- ( ( F |` B ) = (/) -> dom ( F |` B ) = dom (/) ) |
28 |
|
dm0 |
|- dom (/) = (/) |
29 |
27 28
|
eqtrdi |
|- ( ( F |` B ) = (/) -> dom ( F |` B ) = (/) ) |
30 |
26 29
|
sylan9req |
|- ( ( ( B e. X /\ Lim B ) /\ ( F |` B ) = (/) ) -> B = (/) ) |
31 |
|
limeq |
|- ( B = (/) -> ( Lim B <-> Lim (/) ) ) |
32 |
30 31
|
syl |
|- ( ( ( B e. X /\ Lim B ) /\ ( F |` B ) = (/) ) -> ( Lim B <-> Lim (/) ) ) |
33 |
16 32
|
mtbiri |
|- ( ( ( B e. X /\ Lim B ) /\ ( F |` B ) = (/) ) -> -. Lim B ) |
34 |
33
|
ex |
|- ( ( B e. X /\ Lim B ) -> ( ( F |` B ) = (/) -> -. Lim B ) ) |
35 |
15 34
|
mt2d |
|- ( ( B e. X /\ Lim B ) -> -. ( F |` B ) = (/) ) |
36 |
35
|
iffalsed |
|- ( ( B e. X /\ Lim B ) -> if ( ( F |` B ) = (/) , A , if ( Lim dom ( F |` B ) , U. ran ( F |` B ) , ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) ) = if ( Lim dom ( F |` B ) , U. ran ( F |` B ) , ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) ) |
37 |
|
limeq |
|- ( dom ( F |` B ) = B -> ( Lim dom ( F |` B ) <-> Lim B ) ) |
38 |
26 37
|
syl |
|- ( ( B e. X /\ Lim B ) -> ( Lim dom ( F |` B ) <-> Lim B ) ) |
39 |
15 38
|
mpbird |
|- ( ( B e. X /\ Lim B ) -> Lim dom ( F |` B ) ) |
40 |
39
|
iftrued |
|- ( ( B e. X /\ Lim B ) -> if ( Lim dom ( F |` B ) , U. ran ( F |` B ) , ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) = U. ran ( F |` B ) ) |
41 |
36 40
|
eqtrd |
|- ( ( B e. X /\ Lim B ) -> if ( ( F |` B ) = (/) , A , if ( Lim dom ( F |` B ) , U. ran ( F |` B ) , ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) ) = U. ran ( F |` B ) ) |
42 |
|
rnexg |
|- ( ( F |` B ) e. _V -> ran ( F |` B ) e. _V ) |
43 |
|
uniexg |
|- ( ran ( F |` B ) e. _V -> U. ran ( F |` B ) e. _V ) |
44 |
14 42 43
|
3syl |
|- ( ( B e. X /\ Lim B ) -> U. ran ( F |` B ) e. _V ) |
45 |
41 44
|
eqeltrd |
|- ( ( B e. X /\ Lim B ) -> if ( ( F |` B ) = (/) , A , if ( Lim dom ( F |` B ) , U. ran ( F |` B ) , ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) ) e. _V ) |
46 |
|
eqeq1 |
|- ( x = ( F |` B ) -> ( x = (/) <-> ( F |` B ) = (/) ) ) |
47 |
|
dmeq |
|- ( x = ( F |` B ) -> dom x = dom ( F |` B ) ) |
48 |
|
limeq |
|- ( dom x = dom ( F |` B ) -> ( Lim dom x <-> Lim dom ( F |` B ) ) ) |
49 |
47 48
|
syl |
|- ( x = ( F |` B ) -> ( Lim dom x <-> Lim dom ( F |` B ) ) ) |
50 |
|
rneq |
|- ( x = ( F |` B ) -> ran x = ran ( F |` B ) ) |
51 |
50
|
unieqd |
|- ( x = ( F |` B ) -> U. ran x = U. ran ( F |` B ) ) |
52 |
|
fveq1 |
|- ( x = ( F |` B ) -> ( x ` U. dom x ) = ( ( F |` B ) ` U. dom x ) ) |
53 |
47
|
unieqd |
|- ( x = ( F |` B ) -> U. dom x = U. dom ( F |` B ) ) |
54 |
53
|
fveq2d |
|- ( x = ( F |` B ) -> ( ( F |` B ) ` U. dom x ) = ( ( F |` B ) ` U. dom ( F |` B ) ) ) |
55 |
52 54
|
eqtrd |
|- ( x = ( F |` B ) -> ( x ` U. dom x ) = ( ( F |` B ) ` U. dom ( F |` B ) ) ) |
56 |
55
|
fveq2d |
|- ( x = ( F |` B ) -> ( H ` ( x ` U. dom x ) ) = ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) |
57 |
49 51 56
|
ifbieq12d |
|- ( x = ( F |` B ) -> if ( Lim dom x , U. ran x , ( H ` ( x ` U. dom x ) ) ) = if ( Lim dom ( F |` B ) , U. ran ( F |` B ) , ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) ) |
58 |
46 57
|
ifbieq2d |
|- ( x = ( F |` B ) -> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( H ` ( x ` U. dom x ) ) ) ) = if ( ( F |` B ) = (/) , A , if ( Lim dom ( F |` B ) , U. ran ( F |` B ) , ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) ) ) |
59 |
58 1
|
fvmptg |
|- ( ( ( F |` B ) e. _V /\ if ( ( F |` B ) = (/) , A , if ( Lim dom ( F |` B ) , U. ran ( F |` B ) , ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) ) e. _V ) -> ( G ` ( F |` B ) ) = if ( ( F |` B ) = (/) , A , if ( Lim dom ( F |` B ) , U. ran ( F |` B ) , ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) ) ) |
60 |
14 45 59
|
syl2anc |
|- ( ( B e. X /\ Lim B ) -> ( G ` ( F |` B ) ) = if ( ( F |` B ) = (/) , A , if ( Lim dom ( F |` B ) , U. ran ( F |` B ) , ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) ) ) |
61 |
60 41
|
eqtrd |
|- ( ( B e. X /\ Lim B ) -> ( G ` ( F |` B ) ) = U. ran ( F |` B ) ) |
62 |
11 61
|
eqtrd |
|- ( ( B e. X /\ Lim B ) -> ( F ` B ) = U. ran ( F |` B ) ) |
63 |
|
df-ima |
|- ( F " B ) = ran ( F |` B ) |
64 |
63
|
unieqi |
|- U. ( F " B ) = U. ran ( F |` B ) |
65 |
62 64
|
eqtr4di |
|- ( ( B e. X /\ Lim B ) -> ( F ` B ) = U. ( F " B ) ) |