Step |
Hyp |
Ref |
Expression |
1 |
|
tz7.44lem1.1 |
|- G = { <. x , y >. | ( ( x = (/) /\ y = A ) \/ ( -. ( x = (/) \/ Lim dom x ) /\ y = ( H ` ( x ` U. dom x ) ) ) \/ ( Lim dom x /\ y = U. ran x ) ) } |
2 |
|
funopab |
|- ( Fun { <. x , y >. | ( ( x = (/) /\ y = A ) \/ ( -. ( x = (/) \/ Lim dom x ) /\ y = ( H ` ( x ` U. dom x ) ) ) \/ ( Lim dom x /\ y = U. ran x ) ) } <-> A. x E* y ( ( x = (/) /\ y = A ) \/ ( -. ( x = (/) \/ Lim dom x ) /\ y = ( H ` ( x ` U. dom x ) ) ) \/ ( Lim dom x /\ y = U. ran x ) ) ) |
3 |
|
fvex |
|- ( H ` ( x ` U. dom x ) ) e. _V |
4 |
|
vex |
|- x e. _V |
5 |
|
rnexg |
|- ( x e. _V -> ran x e. _V ) |
6 |
|
uniexg |
|- ( ran x e. _V -> U. ran x e. _V ) |
7 |
4 5 6
|
mp2b |
|- U. ran x e. _V |
8 |
|
nlim0 |
|- -. Lim (/) |
9 |
|
dm0 |
|- dom (/) = (/) |
10 |
|
limeq |
|- ( dom (/) = (/) -> ( Lim dom (/) <-> Lim (/) ) ) |
11 |
9 10
|
ax-mp |
|- ( Lim dom (/) <-> Lim (/) ) |
12 |
8 11
|
mtbir |
|- -. Lim dom (/) |
13 |
|
dmeq |
|- ( x = (/) -> dom x = dom (/) ) |
14 |
|
limeq |
|- ( dom x = dom (/) -> ( Lim dom x <-> Lim dom (/) ) ) |
15 |
13 14
|
syl |
|- ( x = (/) -> ( Lim dom x <-> Lim dom (/) ) ) |
16 |
15
|
biimpa |
|- ( ( x = (/) /\ Lim dom x ) -> Lim dom (/) ) |
17 |
12 16
|
mto |
|- -. ( x = (/) /\ Lim dom x ) |
18 |
3 7 17
|
moeq3 |
|- E* y ( ( x = (/) /\ y = A ) \/ ( -. ( x = (/) \/ Lim dom x ) /\ y = ( H ` ( x ` U. dom x ) ) ) \/ ( Lim dom x /\ y = U. ran x ) ) |
19 |
2 18
|
mpgbir |
|- Fun { <. x , y >. | ( ( x = (/) /\ y = A ) \/ ( -. ( x = (/) \/ Lim dom x ) /\ y = ( H ` ( x ` U. dom x ) ) ) \/ ( Lim dom x /\ y = U. ran x ) ) } |
20 |
1
|
funeqi |
|- ( Fun G <-> Fun { <. x , y >. | ( ( x = (/) /\ y = A ) \/ ( -. ( x = (/) \/ Lim dom x ) /\ y = ( H ` ( x ` U. dom x ) ) ) \/ ( Lim dom x /\ y = U. ran x ) ) } ) |
21 |
19 20
|
mpbir |
|- Fun G |