| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tz7.48.1 |
|- F Fn On |
| 2 |
|
vex |
|- y e. _V |
| 3 |
2
|
elrn2 |
|- ( y e. ran F <-> E. x <. x , y >. e. F ) |
| 4 |
|
vex |
|- x e. _V |
| 5 |
4 2
|
opeldm |
|- ( <. x , y >. e. F -> x e. dom F ) |
| 6 |
1
|
fndmi |
|- dom F = On |
| 7 |
5 6
|
eleqtrdi |
|- ( <. x , y >. e. F -> x e. On ) |
| 8 |
7
|
ancri |
|- ( <. x , y >. e. F -> ( x e. On /\ <. x , y >. e. F ) ) |
| 9 |
|
fnopfvb |
|- ( ( F Fn On /\ x e. On ) -> ( ( F ` x ) = y <-> <. x , y >. e. F ) ) |
| 10 |
1 9
|
mpan |
|- ( x e. On -> ( ( F ` x ) = y <-> <. x , y >. e. F ) ) |
| 11 |
10
|
pm5.32i |
|- ( ( x e. On /\ ( F ` x ) = y ) <-> ( x e. On /\ <. x , y >. e. F ) ) |
| 12 |
8 11
|
sylibr |
|- ( <. x , y >. e. F -> ( x e. On /\ ( F ` x ) = y ) ) |
| 13 |
12
|
eximi |
|- ( E. x <. x , y >. e. F -> E. x ( x e. On /\ ( F ` x ) = y ) ) |
| 14 |
3 13
|
sylbi |
|- ( y e. ran F -> E. x ( x e. On /\ ( F ` x ) = y ) ) |
| 15 |
|
nfra1 |
|- F/ x A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) |
| 16 |
|
nfv |
|- F/ x y e. A |
| 17 |
|
rsp |
|- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ( x e. On -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) |
| 18 |
|
eldifi |
|- ( ( F ` x ) e. ( A \ ( F " x ) ) -> ( F ` x ) e. A ) |
| 19 |
|
eleq1 |
|- ( ( F ` x ) = y -> ( ( F ` x ) e. A <-> y e. A ) ) |
| 20 |
18 19
|
syl5ibcom |
|- ( ( F ` x ) e. ( A \ ( F " x ) ) -> ( ( F ` x ) = y -> y e. A ) ) |
| 21 |
20
|
imim2i |
|- ( ( x e. On -> ( F ` x ) e. ( A \ ( F " x ) ) ) -> ( x e. On -> ( ( F ` x ) = y -> y e. A ) ) ) |
| 22 |
21
|
impd |
|- ( ( x e. On -> ( F ` x ) e. ( A \ ( F " x ) ) ) -> ( ( x e. On /\ ( F ` x ) = y ) -> y e. A ) ) |
| 23 |
17 22
|
syl |
|- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ( ( x e. On /\ ( F ` x ) = y ) -> y e. A ) ) |
| 24 |
15 16 23
|
exlimd |
|- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ( E. x ( x e. On /\ ( F ` x ) = y ) -> y e. A ) ) |
| 25 |
14 24
|
syl5 |
|- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ( y e. ran F -> y e. A ) ) |
| 26 |
25
|
ssrdv |
|- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ran F C_ A ) |