Step |
Hyp |
Ref |
Expression |
1 |
|
tz7.48.1 |
|- F Fn On |
2 |
|
vex |
|- y e. _V |
3 |
2
|
elrn2 |
|- ( y e. ran F <-> E. x <. x , y >. e. F ) |
4 |
|
vex |
|- x e. _V |
5 |
4 2
|
opeldm |
|- ( <. x , y >. e. F -> x e. dom F ) |
6 |
1
|
fndmi |
|- dom F = On |
7 |
5 6
|
eleqtrdi |
|- ( <. x , y >. e. F -> x e. On ) |
8 |
7
|
ancri |
|- ( <. x , y >. e. F -> ( x e. On /\ <. x , y >. e. F ) ) |
9 |
|
fnopfvb |
|- ( ( F Fn On /\ x e. On ) -> ( ( F ` x ) = y <-> <. x , y >. e. F ) ) |
10 |
1 9
|
mpan |
|- ( x e. On -> ( ( F ` x ) = y <-> <. x , y >. e. F ) ) |
11 |
10
|
pm5.32i |
|- ( ( x e. On /\ ( F ` x ) = y ) <-> ( x e. On /\ <. x , y >. e. F ) ) |
12 |
8 11
|
sylibr |
|- ( <. x , y >. e. F -> ( x e. On /\ ( F ` x ) = y ) ) |
13 |
12
|
eximi |
|- ( E. x <. x , y >. e. F -> E. x ( x e. On /\ ( F ` x ) = y ) ) |
14 |
3 13
|
sylbi |
|- ( y e. ran F -> E. x ( x e. On /\ ( F ` x ) = y ) ) |
15 |
|
nfra1 |
|- F/ x A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) |
16 |
|
nfv |
|- F/ x y e. A |
17 |
|
rsp |
|- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ( x e. On -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) |
18 |
|
eldifi |
|- ( ( F ` x ) e. ( A \ ( F " x ) ) -> ( F ` x ) e. A ) |
19 |
|
eleq1 |
|- ( ( F ` x ) = y -> ( ( F ` x ) e. A <-> y e. A ) ) |
20 |
18 19
|
syl5ibcom |
|- ( ( F ` x ) e. ( A \ ( F " x ) ) -> ( ( F ` x ) = y -> y e. A ) ) |
21 |
20
|
imim2i |
|- ( ( x e. On -> ( F ` x ) e. ( A \ ( F " x ) ) ) -> ( x e. On -> ( ( F ` x ) = y -> y e. A ) ) ) |
22 |
21
|
impd |
|- ( ( x e. On -> ( F ` x ) e. ( A \ ( F " x ) ) ) -> ( ( x e. On /\ ( F ` x ) = y ) -> y e. A ) ) |
23 |
17 22
|
syl |
|- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ( ( x e. On /\ ( F ` x ) = y ) -> y e. A ) ) |
24 |
15 16 23
|
exlimd |
|- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ( E. x ( x e. On /\ ( F ` x ) = y ) -> y e. A ) ) |
25 |
14 24
|
syl5 |
|- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ( y e. ran F -> y e. A ) ) |
26 |
25
|
ssrdv |
|- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ran F C_ A ) |