Step |
Hyp |
Ref |
Expression |
1 |
|
tz7.48.1 |
|- F Fn On |
2 |
|
ssid |
|- On C_ On |
3 |
|
onelon |
|- ( ( x e. On /\ y e. x ) -> y e. On ) |
4 |
3
|
ancoms |
|- ( ( y e. x /\ x e. On ) -> y e. On ) |
5 |
1
|
fndmi |
|- dom F = On |
6 |
5
|
eleq2i |
|- ( y e. dom F <-> y e. On ) |
7 |
|
fnfun |
|- ( F Fn On -> Fun F ) |
8 |
1 7
|
ax-mp |
|- Fun F |
9 |
|
funfvima |
|- ( ( Fun F /\ y e. dom F ) -> ( y e. x -> ( F ` y ) e. ( F " x ) ) ) |
10 |
8 9
|
mpan |
|- ( y e. dom F -> ( y e. x -> ( F ` y ) e. ( F " x ) ) ) |
11 |
10
|
impcom |
|- ( ( y e. x /\ y e. dom F ) -> ( F ` y ) e. ( F " x ) ) |
12 |
|
eleq1a |
|- ( ( F ` y ) e. ( F " x ) -> ( ( F ` x ) = ( F ` y ) -> ( F ` x ) e. ( F " x ) ) ) |
13 |
|
eldifn |
|- ( ( F ` x ) e. ( A \ ( F " x ) ) -> -. ( F ` x ) e. ( F " x ) ) |
14 |
12 13
|
nsyli |
|- ( ( F ` y ) e. ( F " x ) -> ( ( F ` x ) e. ( A \ ( F " x ) ) -> -. ( F ` x ) = ( F ` y ) ) ) |
15 |
11 14
|
syl |
|- ( ( y e. x /\ y e. dom F ) -> ( ( F ` x ) e. ( A \ ( F " x ) ) -> -. ( F ` x ) = ( F ` y ) ) ) |
16 |
6 15
|
sylan2br |
|- ( ( y e. x /\ y e. On ) -> ( ( F ` x ) e. ( A \ ( F " x ) ) -> -. ( F ` x ) = ( F ` y ) ) ) |
17 |
4 16
|
syldan |
|- ( ( y e. x /\ x e. On ) -> ( ( F ` x ) e. ( A \ ( F " x ) ) -> -. ( F ` x ) = ( F ` y ) ) ) |
18 |
17
|
expimpd |
|- ( y e. x -> ( ( x e. On /\ ( F ` x ) e. ( A \ ( F " x ) ) ) -> -. ( F ` x ) = ( F ` y ) ) ) |
19 |
18
|
com12 |
|- ( ( x e. On /\ ( F ` x ) e. ( A \ ( F " x ) ) ) -> ( y e. x -> -. ( F ` x ) = ( F ` y ) ) ) |
20 |
19
|
ralrimiv |
|- ( ( x e. On /\ ( F ` x ) e. ( A \ ( F " x ) ) ) -> A. y e. x -. ( F ` x ) = ( F ` y ) ) |
21 |
20
|
ralimiaa |
|- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> A. x e. On A. y e. x -. ( F ` x ) = ( F ` y ) ) |
22 |
1
|
tz7.48lem |
|- ( ( On C_ On /\ A. x e. On A. y e. x -. ( F ` x ) = ( F ` y ) ) -> Fun `' ( F |` On ) ) |
23 |
2 21 22
|
sylancr |
|- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> Fun `' ( F |` On ) ) |
24 |
|
fnrel |
|- ( F Fn On -> Rel F ) |
25 |
1 24
|
ax-mp |
|- Rel F |
26 |
5
|
eqimssi |
|- dom F C_ On |
27 |
|
relssres |
|- ( ( Rel F /\ dom F C_ On ) -> ( F |` On ) = F ) |
28 |
25 26 27
|
mp2an |
|- ( F |` On ) = F |
29 |
28
|
cnveqi |
|- `' ( F |` On ) = `' F |
30 |
29
|
funeqi |
|- ( Fun `' ( F |` On ) <-> Fun `' F ) |
31 |
23 30
|
sylib |
|- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> Fun `' F ) |