Step |
Hyp |
Ref |
Expression |
1 |
|
tz7.48.1 |
|- F Fn On |
2 |
1
|
fndmi |
|- dom F = On |
3 |
|
onprc |
|- -. On e. _V |
4 |
2 3
|
eqneltri |
|- -. dom F e. _V |
5 |
1
|
tz7.48-2 |
|- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> Fun `' F ) |
6 |
|
funrnex |
|- ( dom `' F e. _V -> ( Fun `' F -> ran `' F e. _V ) ) |
7 |
6
|
com12 |
|- ( Fun `' F -> ( dom `' F e. _V -> ran `' F e. _V ) ) |
8 |
|
df-rn |
|- ran F = dom `' F |
9 |
8
|
eleq1i |
|- ( ran F e. _V <-> dom `' F e. _V ) |
10 |
|
dfdm4 |
|- dom F = ran `' F |
11 |
10
|
eleq1i |
|- ( dom F e. _V <-> ran `' F e. _V ) |
12 |
7 9 11
|
3imtr4g |
|- ( Fun `' F -> ( ran F e. _V -> dom F e. _V ) ) |
13 |
5 12
|
syl |
|- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ( ran F e. _V -> dom F e. _V ) ) |
14 |
4 13
|
mtoi |
|- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> -. ran F e. _V ) |
15 |
1
|
tz7.48-1 |
|- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ran F C_ A ) |
16 |
|
ssexg |
|- ( ( ran F C_ A /\ A e. _V ) -> ran F e. _V ) |
17 |
16
|
ex |
|- ( ran F C_ A -> ( A e. _V -> ran F e. _V ) ) |
18 |
15 17
|
syl |
|- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ( A e. _V -> ran F e. _V ) ) |
19 |
14 18
|
mtod |
|- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> -. A e. _V ) |