Step |
Hyp |
Ref |
Expression |
1 |
|
ordtr |
|- ( Ord A -> Tr A ) |
2 |
|
ordfr |
|- ( Ord A -> _E Fr A ) |
3 |
|
tz7.2 |
|- ( ( Tr A /\ _E Fr A /\ B e. A ) -> ( B C_ A /\ B =/= A ) ) |
4 |
3
|
3exp |
|- ( Tr A -> ( _E Fr A -> ( B e. A -> ( B C_ A /\ B =/= A ) ) ) ) |
5 |
1 2 4
|
sylc |
|- ( Ord A -> ( B e. A -> ( B C_ A /\ B =/= A ) ) ) |
6 |
5
|
adantr |
|- ( ( Ord A /\ Tr B ) -> ( B e. A -> ( B C_ A /\ B =/= A ) ) ) |
7 |
|
pssdifn0 |
|- ( ( B C_ A /\ B =/= A ) -> ( A \ B ) =/= (/) ) |
8 |
|
difss |
|- ( A \ B ) C_ A |
9 |
|
tz7.5 |
|- ( ( Ord A /\ ( A \ B ) C_ A /\ ( A \ B ) =/= (/) ) -> E. x e. ( A \ B ) ( ( A \ B ) i^i x ) = (/) ) |
10 |
8 9
|
mp3an2 |
|- ( ( Ord A /\ ( A \ B ) =/= (/) ) -> E. x e. ( A \ B ) ( ( A \ B ) i^i x ) = (/) ) |
11 |
|
eldifi |
|- ( x e. ( A \ B ) -> x e. A ) |
12 |
|
trss |
|- ( Tr A -> ( x e. A -> x C_ A ) ) |
13 |
|
difin0ss |
|- ( ( ( A \ B ) i^i x ) = (/) -> ( x C_ A -> x C_ B ) ) |
14 |
13
|
com12 |
|- ( x C_ A -> ( ( ( A \ B ) i^i x ) = (/) -> x C_ B ) ) |
15 |
11 12 14
|
syl56 |
|- ( Tr A -> ( x e. ( A \ B ) -> ( ( ( A \ B ) i^i x ) = (/) -> x C_ B ) ) ) |
16 |
1 15
|
syl |
|- ( Ord A -> ( x e. ( A \ B ) -> ( ( ( A \ B ) i^i x ) = (/) -> x C_ B ) ) ) |
17 |
16
|
ad2antrr |
|- ( ( ( Ord A /\ Tr B ) /\ B C_ A ) -> ( x e. ( A \ B ) -> ( ( ( A \ B ) i^i x ) = (/) -> x C_ B ) ) ) |
18 |
17
|
imp32 |
|- ( ( ( ( Ord A /\ Tr B ) /\ B C_ A ) /\ ( x e. ( A \ B ) /\ ( ( A \ B ) i^i x ) = (/) ) ) -> x C_ B ) |
19 |
|
eleq1w |
|- ( y = x -> ( y e. B <-> x e. B ) ) |
20 |
19
|
biimpcd |
|- ( y e. B -> ( y = x -> x e. B ) ) |
21 |
|
eldifn |
|- ( x e. ( A \ B ) -> -. x e. B ) |
22 |
20 21
|
nsyli |
|- ( y e. B -> ( x e. ( A \ B ) -> -. y = x ) ) |
23 |
22
|
imp |
|- ( ( y e. B /\ x e. ( A \ B ) ) -> -. y = x ) |
24 |
23
|
adantll |
|- ( ( ( B C_ A /\ y e. B ) /\ x e. ( A \ B ) ) -> -. y = x ) |
25 |
24
|
adantl |
|- ( ( ( Ord A /\ Tr B ) /\ ( ( B C_ A /\ y e. B ) /\ x e. ( A \ B ) ) ) -> -. y = x ) |
26 |
|
trel |
|- ( Tr B -> ( ( x e. y /\ y e. B ) -> x e. B ) ) |
27 |
26
|
expcomd |
|- ( Tr B -> ( y e. B -> ( x e. y -> x e. B ) ) ) |
28 |
27
|
imp |
|- ( ( Tr B /\ y e. B ) -> ( x e. y -> x e. B ) ) |
29 |
28 21
|
nsyli |
|- ( ( Tr B /\ y e. B ) -> ( x e. ( A \ B ) -> -. x e. y ) ) |
30 |
29
|
ex |
|- ( Tr B -> ( y e. B -> ( x e. ( A \ B ) -> -. x e. y ) ) ) |
31 |
30
|
adantld |
|- ( Tr B -> ( ( B C_ A /\ y e. B ) -> ( x e. ( A \ B ) -> -. x e. y ) ) ) |
32 |
31
|
imp32 |
|- ( ( Tr B /\ ( ( B C_ A /\ y e. B ) /\ x e. ( A \ B ) ) ) -> -. x e. y ) |
33 |
32
|
adantll |
|- ( ( ( Ord A /\ Tr B ) /\ ( ( B C_ A /\ y e. B ) /\ x e. ( A \ B ) ) ) -> -. x e. y ) |
34 |
|
ordwe |
|- ( Ord A -> _E We A ) |
35 |
|
ssel2 |
|- ( ( B C_ A /\ y e. B ) -> y e. A ) |
36 |
35 11
|
anim12i |
|- ( ( ( B C_ A /\ y e. B ) /\ x e. ( A \ B ) ) -> ( y e. A /\ x e. A ) ) |
37 |
|
wecmpep |
|- ( ( _E We A /\ ( y e. A /\ x e. A ) ) -> ( y e. x \/ y = x \/ x e. y ) ) |
38 |
34 36 37
|
syl2an |
|- ( ( Ord A /\ ( ( B C_ A /\ y e. B ) /\ x e. ( A \ B ) ) ) -> ( y e. x \/ y = x \/ x e. y ) ) |
39 |
38
|
adantlr |
|- ( ( ( Ord A /\ Tr B ) /\ ( ( B C_ A /\ y e. B ) /\ x e. ( A \ B ) ) ) -> ( y e. x \/ y = x \/ x e. y ) ) |
40 |
25 33 39
|
ecase23d |
|- ( ( ( Ord A /\ Tr B ) /\ ( ( B C_ A /\ y e. B ) /\ x e. ( A \ B ) ) ) -> y e. x ) |
41 |
40
|
exp44 |
|- ( ( Ord A /\ Tr B ) -> ( B C_ A -> ( y e. B -> ( x e. ( A \ B ) -> y e. x ) ) ) ) |
42 |
41
|
com34 |
|- ( ( Ord A /\ Tr B ) -> ( B C_ A -> ( x e. ( A \ B ) -> ( y e. B -> y e. x ) ) ) ) |
43 |
42
|
imp31 |
|- ( ( ( ( Ord A /\ Tr B ) /\ B C_ A ) /\ x e. ( A \ B ) ) -> ( y e. B -> y e. x ) ) |
44 |
43
|
ssrdv |
|- ( ( ( ( Ord A /\ Tr B ) /\ B C_ A ) /\ x e. ( A \ B ) ) -> B C_ x ) |
45 |
44
|
adantrr |
|- ( ( ( ( Ord A /\ Tr B ) /\ B C_ A ) /\ ( x e. ( A \ B ) /\ ( ( A \ B ) i^i x ) = (/) ) ) -> B C_ x ) |
46 |
18 45
|
eqssd |
|- ( ( ( ( Ord A /\ Tr B ) /\ B C_ A ) /\ ( x e. ( A \ B ) /\ ( ( A \ B ) i^i x ) = (/) ) ) -> x = B ) |
47 |
11
|
ad2antrl |
|- ( ( ( ( Ord A /\ Tr B ) /\ B C_ A ) /\ ( x e. ( A \ B ) /\ ( ( A \ B ) i^i x ) = (/) ) ) -> x e. A ) |
48 |
46 47
|
eqeltrrd |
|- ( ( ( ( Ord A /\ Tr B ) /\ B C_ A ) /\ ( x e. ( A \ B ) /\ ( ( A \ B ) i^i x ) = (/) ) ) -> B e. A ) |
49 |
48
|
rexlimdvaa |
|- ( ( ( Ord A /\ Tr B ) /\ B C_ A ) -> ( E. x e. ( A \ B ) ( ( A \ B ) i^i x ) = (/) -> B e. A ) ) |
50 |
10 49
|
syl5 |
|- ( ( ( Ord A /\ Tr B ) /\ B C_ A ) -> ( ( Ord A /\ ( A \ B ) =/= (/) ) -> B e. A ) ) |
51 |
50
|
exp4b |
|- ( ( Ord A /\ Tr B ) -> ( B C_ A -> ( Ord A -> ( ( A \ B ) =/= (/) -> B e. A ) ) ) ) |
52 |
51
|
com23 |
|- ( ( Ord A /\ Tr B ) -> ( Ord A -> ( B C_ A -> ( ( A \ B ) =/= (/) -> B e. A ) ) ) ) |
53 |
52
|
adantrd |
|- ( ( Ord A /\ Tr B ) -> ( ( Ord A /\ Tr B ) -> ( B C_ A -> ( ( A \ B ) =/= (/) -> B e. A ) ) ) ) |
54 |
53
|
pm2.43i |
|- ( ( Ord A /\ Tr B ) -> ( B C_ A -> ( ( A \ B ) =/= (/) -> B e. A ) ) ) |
55 |
7 54
|
syl7 |
|- ( ( Ord A /\ Tr B ) -> ( B C_ A -> ( ( B C_ A /\ B =/= A ) -> B e. A ) ) ) |
56 |
55
|
exp4a |
|- ( ( Ord A /\ Tr B ) -> ( B C_ A -> ( B C_ A -> ( B =/= A -> B e. A ) ) ) ) |
57 |
56
|
pm2.43d |
|- ( ( Ord A /\ Tr B ) -> ( B C_ A -> ( B =/= A -> B e. A ) ) ) |
58 |
57
|
impd |
|- ( ( Ord A /\ Tr B ) -> ( ( B C_ A /\ B =/= A ) -> B e. A ) ) |
59 |
6 58
|
impbid |
|- ( ( Ord A /\ Tr B ) -> ( B e. A <-> ( B C_ A /\ B =/= A ) ) ) |