Step |
Hyp |
Ref |
Expression |
1 |
|
tz9.12lem.1 |
|- A e. _V |
2 |
|
tz9.12lem.2 |
|- F = ( z e. _V |-> |^| { v e. On | z e. ( R1 ` v ) } ) |
3 |
|
imassrn |
|- ( F " A ) C_ ran F |
4 |
2
|
rnmpt |
|- ran F = { x | E. z e. _V x = |^| { v e. On | z e. ( R1 ` v ) } } |
5 |
|
id |
|- ( x = |^| { v e. On | z e. ( R1 ` v ) } -> x = |^| { v e. On | z e. ( R1 ` v ) } ) |
6 |
|
ssrab2 |
|- { v e. On | z e. ( R1 ` v ) } C_ On |
7 |
|
eqvisset |
|- ( x = |^| { v e. On | z e. ( R1 ` v ) } -> |^| { v e. On | z e. ( R1 ` v ) } e. _V ) |
8 |
|
intex |
|- ( { v e. On | z e. ( R1 ` v ) } =/= (/) <-> |^| { v e. On | z e. ( R1 ` v ) } e. _V ) |
9 |
7 8
|
sylibr |
|- ( x = |^| { v e. On | z e. ( R1 ` v ) } -> { v e. On | z e. ( R1 ` v ) } =/= (/) ) |
10 |
|
oninton |
|- ( ( { v e. On | z e. ( R1 ` v ) } C_ On /\ { v e. On | z e. ( R1 ` v ) } =/= (/) ) -> |^| { v e. On | z e. ( R1 ` v ) } e. On ) |
11 |
6 9 10
|
sylancr |
|- ( x = |^| { v e. On | z e. ( R1 ` v ) } -> |^| { v e. On | z e. ( R1 ` v ) } e. On ) |
12 |
5 11
|
eqeltrd |
|- ( x = |^| { v e. On | z e. ( R1 ` v ) } -> x e. On ) |
13 |
12
|
rexlimivw |
|- ( E. z e. _V x = |^| { v e. On | z e. ( R1 ` v ) } -> x e. On ) |
14 |
13
|
abssi |
|- { x | E. z e. _V x = |^| { v e. On | z e. ( R1 ` v ) } } C_ On |
15 |
4 14
|
eqsstri |
|- ran F C_ On |
16 |
3 15
|
sstri |
|- ( F " A ) C_ On |