Description: Lemma for tz9.12 . (Contributed by NM, 22-Sep-2003)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tz9.12lem.1 | |- A e. _V |
|
tz9.12lem.2 | |- F = ( z e. _V |-> |^| { v e. On | z e. ( R1 ` v ) } ) |
||
Assertion | tz9.12lem2 | |- suc U. ( F " A ) e. On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz9.12lem.1 | |- A e. _V |
|
2 | tz9.12lem.2 | |- F = ( z e. _V |-> |^| { v e. On | z e. ( R1 ` v ) } ) |
|
3 | 1 2 | tz9.12lem1 | |- ( F " A ) C_ On |
4 | 2 | funmpt2 | |- Fun F |
5 | 1 | funimaex | |- ( Fun F -> ( F " A ) e. _V ) |
6 | 4 5 | ax-mp | |- ( F " A ) e. _V |
7 | 6 | ssonunii | |- ( ( F " A ) C_ On -> U. ( F " A ) e. On ) |
8 | 3 7 | ax-mp | |- U. ( F " A ) e. On |
9 | 8 | onsuci | |- suc U. ( F " A ) e. On |