Metamath Proof Explorer


Theorem tz9.13g

Description: Every set is well-founded, assuming the Axiom of Regularity. Proposition 9.13 of TakeutiZaring p. 78. This variant of tz9.13 expresses the class existence requirement as an antecedent. (Contributed by NM, 4-Oct-2003)

Ref Expression
Assertion tz9.13g
|- ( A e. V -> E. x e. On A e. ( R1 ` x ) )

Proof

Step Hyp Ref Expression
1 eleq1
 |-  ( y = A -> ( y e. ( R1 ` x ) <-> A e. ( R1 ` x ) ) )
2 1 rexbidv
 |-  ( y = A -> ( E. x e. On y e. ( R1 ` x ) <-> E. x e. On A e. ( R1 ` x ) ) )
3 vex
 |-  y e. _V
4 3 tz9.13
 |-  E. x e. On y e. ( R1 ` x )
5 2 4 vtoclg
 |-  ( A e. V -> E. x e. On A e. ( R1 ` x ) )