Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. RR* ) |
2 |
|
simp3 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A <_ B ) |
3 |
|
xrleid |
|- ( B e. RR* -> B <_ B ) |
4 |
3
|
3ad2ant2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B <_ B ) |
5 |
|
elicc1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( B e. ( A [,] B ) <-> ( B e. RR* /\ A <_ B /\ B <_ B ) ) ) |
6 |
5
|
3adant3 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( B e. ( A [,] B ) <-> ( B e. RR* /\ A <_ B /\ B <_ B ) ) ) |
7 |
1 2 4 6
|
mpbir3and |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |