Metamath Proof Explorer


Theorem ubico

Description: A right-open interval does not contain its right endpoint. (Contributed by Thierry Arnoux, 5-Apr-2017)

Ref Expression
Assertion ubico
|- ( ( A e. RR /\ B e. RR* ) -> -. B e. ( A [,) B ) )

Proof

Step Hyp Ref Expression
1 simp3
 |-  ( ( B e. RR /\ A <_ B /\ B < B ) -> B < B )
2 simp1
 |-  ( ( B e. RR /\ A <_ B /\ B < B ) -> B e. RR )
3 2 ltnrd
 |-  ( ( B e. RR /\ A <_ B /\ B < B ) -> -. B < B )
4 1 3 pm2.65i
 |-  -. ( B e. RR /\ A <_ B /\ B < B )
5 elico2
 |-  ( ( A e. RR /\ B e. RR* ) -> ( B e. ( A [,) B ) <-> ( B e. RR /\ A <_ B /\ B < B ) ) )
6 4 5 mtbiri
 |-  ( ( A e. RR /\ B e. RR* ) -> -. B e. ( A [,) B ) )