Description: A right-open interval does not contain its right endpoint. (Contributed by Thierry Arnoux, 5-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | ubico | |- ( ( A e. RR /\ B e. RR* ) -> -. B e. ( A [,) B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 | |- ( ( B e. RR /\ A <_ B /\ B < B ) -> B < B ) |
|
2 | simp1 | |- ( ( B e. RR /\ A <_ B /\ B < B ) -> B e. RR ) |
|
3 | 2 | ltnrd | |- ( ( B e. RR /\ A <_ B /\ B < B ) -> -. B < B ) |
4 | 1 3 | pm2.65i | |- -. ( B e. RR /\ A <_ B /\ B < B ) |
5 | elico2 | |- ( ( A e. RR /\ B e. RR* ) -> ( B e. ( A [,) B ) <-> ( B e. RR /\ A <_ B /\ B < B ) ) ) |
|
6 | 4 5 | mtbiri | |- ( ( A e. RR /\ B e. RR* ) -> -. B e. ( A [,) B ) ) |