| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ubth.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | ubth.2 |  |-  N = ( normCV ` W ) | 
						
							| 3 |  | ubth.3 |  |-  M = ( U normOpOLD W ) | 
						
							| 4 |  | oveq1 |  |-  ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> ( U BLnOp W ) = ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp W ) ) | 
						
							| 5 | 4 | sseq2d |  |-  ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> ( T C_ ( U BLnOp W ) <-> T C_ ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp W ) ) ) | 
						
							| 6 |  | fveq2 |  |-  ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> ( BaseSet ` U ) = ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) ) | 
						
							| 7 | 1 6 | eqtrid |  |-  ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> X = ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) ) | 
						
							| 8 | 7 | raleqdv |  |-  ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> ( A. x e. X E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> A. x e. ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c ) ) | 
						
							| 9 |  | oveq1 |  |-  ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> ( U normOpOLD W ) = ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ) | 
						
							| 10 | 3 9 | eqtrid |  |-  ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> M = ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ) | 
						
							| 11 | 10 | fveq1d |  |-  ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> ( M ` t ) = ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` t ) ) | 
						
							| 12 | 11 | breq1d |  |-  ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> ( ( M ` t ) <_ d <-> ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` t ) <_ d ) ) | 
						
							| 13 | 12 | rexralbidv |  |-  ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> ( E. d e. RR A. t e. T ( M ` t ) <_ d <-> E. d e. RR A. t e. T ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` t ) <_ d ) ) | 
						
							| 14 | 8 13 | bibi12d |  |-  ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> ( ( A. x e. X E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( M ` t ) <_ d ) <-> ( A. x e. ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` t ) <_ d ) ) ) | 
						
							| 15 | 5 14 | imbi12d |  |-  ( U = if ( U e. CBan , U , <. <. + , x. >. , abs >. ) -> ( ( T C_ ( U BLnOp W ) -> ( A. x e. X E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( M ` t ) <_ d ) ) <-> ( T C_ ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp W ) -> ( A. x e. ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` t ) <_ d ) ) ) ) | 
						
							| 16 |  | oveq2 |  |-  ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp W ) = ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) | 
						
							| 17 | 16 | sseq2d |  |-  ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( T C_ ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp W ) <-> T C_ ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) ) | 
						
							| 18 |  | fveq2 |  |-  ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( normCV ` W ) = ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) | 
						
							| 19 | 2 18 | eqtrid |  |-  ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> N = ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) | 
						
							| 20 | 19 | fveq1d |  |-  ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( N ` ( t ` x ) ) = ( ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` ( t ` x ) ) ) | 
						
							| 21 | 20 | breq1d |  |-  ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( ( N ` ( t ` x ) ) <_ c <-> ( ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` ( t ` x ) ) <_ c ) ) | 
						
							| 22 | 21 | rexralbidv |  |-  ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> E. c e. RR A. t e. T ( ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` ( t ` x ) ) <_ c ) ) | 
						
							| 23 | 22 | ralbidv |  |-  ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( A. x e. ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> A. x e. ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) E. c e. RR A. t e. T ( ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` ( t ` x ) ) <_ c ) ) | 
						
							| 24 |  | oveq2 |  |-  ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) = ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) | 
						
							| 25 | 24 | fveq1d |  |-  ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` t ) = ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` t ) ) | 
						
							| 26 | 25 | breq1d |  |-  ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` t ) <_ d <-> ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` t ) <_ d ) ) | 
						
							| 27 | 26 | rexralbidv |  |-  ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( E. d e. RR A. t e. T ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` t ) <_ d <-> E. d e. RR A. t e. T ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` t ) <_ d ) ) | 
						
							| 28 | 23 27 | bibi12d |  |-  ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( ( A. x e. ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` t ) <_ d ) <-> ( A. x e. ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) E. c e. RR A. t e. T ( ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` t ) <_ d ) ) ) | 
						
							| 29 | 17 28 | imbi12d |  |-  ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( ( T C_ ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp W ) -> ( A. x e. ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` t ) <_ d ) ) <-> ( T C_ ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) -> ( A. x e. ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) E. c e. RR A. t e. T ( ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` t ) <_ d ) ) ) ) | 
						
							| 30 |  | eqid |  |-  ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) = ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) | 
						
							| 31 |  | eqid |  |-  ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) = ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) | 
						
							| 32 |  | eqid |  |-  ( IndMet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) = ( IndMet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) | 
						
							| 33 |  | eqid |  |-  ( MetOpen ` ( IndMet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) ) = ( MetOpen ` ( IndMet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) ) | 
						
							| 34 |  | eqid |  |-  <. <. + , x. >. , abs >. = <. <. + , x. >. , abs >. | 
						
							| 35 | 34 | cnbn |  |-  <. <. + , x. >. , abs >. e. CBan | 
						
							| 36 | 35 | elimel |  |-  if ( U e. CBan , U , <. <. + , x. >. , abs >. ) e. CBan | 
						
							| 37 |  | elimnvu |  |-  if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) e. NrmCVec | 
						
							| 38 |  | id |  |-  ( T C_ ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) -> T C_ ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) | 
						
							| 39 | 30 31 32 33 36 37 38 | ubthlem3 |  |-  ( T C_ ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) BLnOp if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) -> ( A. x e. ( BaseSet ` if ( U e. CBan , U , <. <. + , x. >. , abs >. ) ) E. c e. RR A. t e. T ( ( normCV ` if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( ( if ( U e. CBan , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` t ) <_ d ) ) | 
						
							| 40 | 15 29 39 | dedth2h |  |-  ( ( U e. CBan /\ W e. NrmCVec ) -> ( T C_ ( U BLnOp W ) -> ( A. x e. X E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( M ` t ) <_ d ) ) ) | 
						
							| 41 | 40 | 3impia |  |-  ( ( U e. CBan /\ W e. NrmCVec /\ T C_ ( U BLnOp W ) ) -> ( A. x e. X E. c e. RR A. t e. T ( N ` ( t ` x ) ) <_ c <-> E. d e. RR A. t e. T ( M ` t ) <_ d ) ) |